The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests?

Authors


*Author to whom correspondence should be addressed: I. Parmentier, Université Libre de Bruxelles, Laboratoire de Botanique Systématique et de Phytosociologie, CP 169, 50 Av. F. D. Roosevelt, B-1050 Bruxelles, Belgium. Tel.: +32 2650 21 26. Fax: +32 2650 21 25. E-mail: inparmen@ulb.ac.be.

Summary

  • 1Comparative analyses of diversity variation among and between regions allow testing of alternative explanatory models and ideas. Here, we explore the relationships between the tree α-diversity of small rain forest plots in Africa and in Amazonia and climatic variables, to test the explanatory power of climate and the consistency of relationships between the two continents.
  • 2Our analysis included 1003 African plots and 512 Amazonian plots. All are located in old-growth primary non-flooded forest under 900 m altitude. Tree α-diversity is estimated using Fisher's alpha calculated for trees with diameter at breast height ≥ 10 cm. Mean diversity values are lower in Africa by a factor of two.
  • 3Climate-diversity analyses are based on data aggregated for grid cells of 2.5 × 2.5 km. The highest Fisher's alpha values are found in Amazonian forests with no climatic analogue in our African data set. When the analysis is restricted to pixels of directly comparable climate, the mean diversity of African forests is still much lower than that in Amazonia. Only in regions of low mean annual rainfall and temperature is mean diversity in African forests comparable with, or superior to, the diversity in Amazonia.
  • 4The climatic variables best correlated with the tree α-diversity are largely different in the African and Amazonian data, or correlate with African and Amazonian diversity in opposite directions.
  • 5These differences in the relationship between local/landscape-scale α-diversity and climate variables between the two continents point to the possible significance of an array of factors including: macro-scale climate differences between the two regions, overall size of the respective species pools, past climate variation, other forms of long-term and short-term environmental variation, and edaphics. We speculate that the lower α-diversity of African lowland rain forests reported here may be in part a function of the smaller regional species pool of tree species adapted to warm, wet conditions.
  • 6Our results point to the importance of controlling for variation in plot size and for gross differences in regional climates when undertaking comparative analyses between regions of how local diversity of forest varies in relation to other putative controlling factors.

Ancillary