SEARCH

SEARCH BY CITATION

References

  • Bais, H.P., Walker, T.S., Stermitz, F.R., Hufbauer, R.A. & Vivanco, J.M. (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiology, 128, 11731179.
  • Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M. & Vivanco, J.M. (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301, 13771380.
  • Baumeister, D. & Callaway, R.M. (2006) Facilitation by Pinus flexilis during succession: a hierarchy of mechanisms benefits other plant species. Ecology, 87, 18161830.
  • Blair, A.C., Hanson, B.D., Brunk, G.R., Marrs, R.A., Westra, P., Nissen, S.J. & Hufbauer, R.A. (2005) New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecology Letters, 8, 10391047.
  • Blair, A.C., Nissen, S.J., Brunk, G.R. & Hufbauer, R.A. (2006) A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. Journal of Chemical Ecology, 32, 23272331.
  • Bohlmann, R., Burkhart, T. & Zdero, C. (1973) Naturally Occurring Acetylenes. Academic Press, London.
  • Brooker, R., Kikvidze, Z., Pugnaire, F.I., Callaway, R.M., Choler, P., Lortie, C.J. & Michalet, R. (2005) The importance of importance. Oikos, 109, 6370.
  • Buta, J.G. & Lusby, W.R. (1986) Catechins as germination and growth inhibitors in Lespedeza seeds. Phytochemistry, 25, 9395.
  • D’Abrosca, B., Dellagreca, M., Fiorentino, A., Isidori, M., Monaco, P. & Pacifico, S. (2006) Chemical constituents of the aquatic plant Schoenoplectus lacustris: Evaluation of phytotoxic effects on the green alga Selenastrum capricornutum. Journal of Chemical Ecology, 32, 8196.
  • Efron, B. (1988) Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal of the American Statistical Association, 83, 414425.
  • Es-Safi, N.-E., Cheynier, V. & Moutounet, M. (2003) Effect of copper on oxidation of (+)-catechin in a model solution system. International Journal of Food Science & Technology, 38, 153163.
  • Fletcher, R.A. & Renney, A.J. (1963) A growth inhibitor found in Centaurea spp. Canadian Journal of Plant Science, 43, 475481.
  • Furubayashi, A., Hiradate, S. & Fujii, Y. (2007) Role of catechol structure in the adsorption and transformation reactions of L-DOPA in soils. Journal of Chemical Ecology, 33, 239250.
  • Gomah, A.M. & Davies, R.I. (1974) Identification of the active ligands chelating Zn in some plant water extracts. Plant and Soil, 40, 119.
  • He, W.-M., Feng, Y, Ridenour, W.M., Thelen, G.C., Pollock, J.L., Diaconu, A. & Callaway, R.M. (2009) Novel weapons and invasion: biogeographic differences in the competitive effects of Centaurea maculosa and its root exudate (±)-catechin. Oecologia, 159, 803815.
  • Inderjit, Pollock, J.L., Callaway, R.M. & Holben, W.E. (2008a) Phytotoxic effects of (±)-catechin in vitro, in soil, and in the field. PLoSONE, 3, e2536.
  • Inderjit, Seastedt, T.R., Callaway, R.M., Pollock, J.L. & Kaur, J. (2008b) Allelopathy and plant invasions: traditional, congeneric, and biogeographical approaches. Biological Invasions, Doi: DOI: 10.1007/s10530-008-9239-9.
  • Iqbal, Z., Hiradate, S., Noda, A., Isojima, S. & Fujii, Y. (2003) Allelopathic activity of buckwheat: isolation and characterization of phenolics. Weed Science, 51, 657662.
  • Kelsey, R.G. & Locken, L.J. (1987) Phytotoxic properties of cnicin, a sesquiterpene lactone from Centaurea maculosa (spotted knapweed). Journal of Chemical Ecology, 13, 1933.
  • Kitzberger, T., Steinaker, D.F. & Veblen, T.T. (2000) Effects of climatic variability on facilitation of tree establishment in Northern Patagonia. Ecology, 81, 19141924.
  • Levine, J.M. (2000) Complex interactions in a streamside plant community. Ecology, 81, 34313444.
  • Lim, Y.Y., Ginny Lim, T.T. & Liew, L.P. (2005) Autooxidation of some polyphenols in various copper(II) solutions. Malaysian Journal of Chemistry, 7, 3237.
  • McDonald, M., Mila, I. & Scalbert, A. (1996) Precipitation of metal ions by plant polyphenols: Optimal conditions and origin of precipitation. Journal of Agricultural and Food Chemistry, 44, 599606.
  • Paveto, C., Güida, M.C., Esteva, M.I., Martino, V., Coussio, J., Flawiá, M.M. & Torres, H.N. (2004) Anti-Trypanosoma cruzi activity of green tea (Camellia sinensis) catechins. Antimicrobial Agents and Chemotherapy, 48, 6974.
  • Perry, L.G., Johnson, C., Alford, É.R., Vivanco, J.M. & Paschke, M.W. (2005a) Screening of grassland plants for restoration after spotted knapweed invasion. Restoration Ecology, 13, 725735.
  • Perry, L.G., Thelen, G.C., Ridenour, W.M., Weir, T.L., Callaway, R.M., Paschke, M.W. & Vivanco, J.M. (2005b) Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. Journal of Ecology, 93, 11261135.
  • Perry, L.G., Thelen, G.C., Ridenour, W.M., Callaway, R.M., Paschke, M.W. & Vivanco, J.M. (2007) Concentrations of the allelochemical (±)-catechin IN Centaurea maculosa soils. Journal of Chemical Ecology, 33, 23372344.
  • Ridenour, W.M. & Callaway, R.M. (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia, 126, 444450.
  • Ridenour, W.M., Vivanco, J.M., Feng, Y., Horiuchi, J. & Callaway, R.M. (2008) No evidence for tradeoffs: Centaurea plants from America are better competitors and defenders. Ecological Monographs, 78, 369386.
  • Rudrappa, T., Bonsall, J., Gallagher, J.L., Seliskar, D.M. & Bais, H.P. (2007) Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. Journal of Chemical Ecology, 33, 18981918.
  • Simões, K., Du, J., Kretzshmar, F.S., Broeckling, C.D., Stermitz, F.R., Vivanco, J.M. & Braga, M.R. (2008) Phytotoxic catechin leached by seeds of the tropical weed Sesbania virgata. Journal of Chemical Ecology, 34, 681687.
  • SPSS Inc. (2006) SPSS 15.0 for Windows. SPSS Inc., Chicago, IL, USA.
  • Stevens, K.L. (1986) Allelopathic polyacetylenes from Centaurea repens (Russian knapweed). Journal of Chemical Ecology, 12, 12051211.
  • Tharayil, N., Bhowmik, P., Alpert, P., Walker, E., Amarasiriwardena, D. & Xing, B. (2009) Dual-purpose secondary compounds: Phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytologist, 181, 424434.
  • Thelen, G.C., Vivanco, J.M., Newingham, B., Good, W., Bais, H.P., Landres, P., Caesar, A. & Callaway, R.M. (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecology Letters, 8, 209217.
  • Thorpe, A.S. (2006) Biochemical effects of Centaurea maculosa on soil nutrient cycles and plant communities, PhD in Organismal Biological Ecology PhD Dissertation. The University of Montana, Missoula.
  • Tilman, D. (1985) The resource-ratio hypothesis of plant succession. The American Naturalist, 125, 827852.
  • Weir, T.L., Bais, H.P. & Vivanco, J.M. (2003) Intraspecific and interspecific interactions mediated by a phytotoxin, (-)-catechin, secreted by the roots of Centaurea maculosa (spotted knapweed). Journal of Chemical Ecology, 29, 23972412.
  • Weir, T.L., Bais, H.P., Stull, V.J., Callaway, R.M., Thelen, G.C., Ridenour, W.M., Bhamidi, S., Stermitz, F.R. & Vivanco, J.M. (2006) Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta, 223, 785795.
  • Wilson, S.D. & Keddy, P.A. (1986) Measuring diffuse competition along an environmental gradient: results from a shoreline plant community. The American Naturalist, 127, 862869.