SEARCH

SEARCH BY CITATION

References

  • Agrawal, A.A. (2004) Resistance and susceptibility of milkweed: Competition, root herbivory, and plant genetic variation. Ecology, 85, 21182133.
  • Agrawal, A.A. (2007) Macroevolution of plant defense strategies. Trends in Ecology & Evolution, 22, 103109.
  • Agrawal, A.A., Conner, J.K. & Rasmann, S. (2010) Tradeoffs and adaptive negative correlations in evolutionary ecology. Evolution After Darwin: The First 150 Years (eds G.Bell, W.F.Eanes, D.J.Futuyma & J.S.Levinton), pp. 243268. Sinauer, Sunderland, MA, USA.
  • Agrawal, A.A. & Fishbein, M. (2006) Plant defense syndromes. Ecology, 87, S132S149.
  • Agrawal, A.A. & Malcolm, S.B. (2002) Once upon a milkweed - In this complex community, one insects poison may be another meal. Natural History, 111, 4853.
  • Agrawal, A.A., Janssen, A., Bruin, J., Posthumus, M.A. & Sabelis, M.W. (2002) An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecology Letters, 5, 377385.
  • Alekseev, E., Glazer, I. & Samish, M. (2006) Effect of soil texture and moisture on the activity of entomopathogenic nematodes against female Boophilus annulatus ticks. BioControl, 51, 507518.
  • Ali, J., Alborn, H. & Stelinski, L. (2010) Subterranean Herbivore-induced Volatiles Released by Citrus Roots upon Feeding by Diaprepes abbreviatus Recruit Entomopathogenic Nematodes. Journal of Chemical Ecology, 36, 361368.
  • Andersen, D.C. (1987) Belowground Herbivory in Natural Communities - a Review Emphasizing Fossorial Animals. Quarterly Review of Biology, 62, 261286.
  • Ballhorn, D.J., Pietrowski, A. & Lieberei, R. (2010) Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.). Journal of Ecology, 98, 226236.
  • Ballhorn, D.J., Kautz, S., Lion, U. & Heil, M. (2008) Trade-offs between direct and indirect defences of lima bean (Phaseolus lunatus). Journal of Ecology, 96, 971980.
  • Barbercheck, M.E., Wang, J. & Hirsh, I.S. (1995) Host-Plant Effects on Entomopathogenic Nematodes. Journal of Invertebrate Pathology, 66, 169177.
  • Benrey, B. & Denno, R.F. (1997) The slow-growth-high-mortality hypothesis: A test using the cabbage butterfly. Ecology, 78, 987999.
  • Boethel, D.J. & Eikenbary, R.D. (1986) Interactions of plant resistance and parasitoids and predators of insects. Ellis Horwood Ltd, New York.
  • Brody, A.K. & Karban, R. (1992) Lack of tradeoff between constitutive and induced defenses among varieties of cotton. Oikos, 65, 301306.
  • Campbell, J.F., Lewis, E., Yoder, F. & Gaugler, R. (1996) Entomopathogenic nematode (Heterorhabditidae and Steinernematidae) spatial distribution in turfgrass. Parasitology, 113, 473482.
  • Chehab, E.W., Kaspi, R., Savchenko, T., Rowe, H., Negre-Zakharov, F., Kliebenstein, D. & Dehesh, K. (2008) Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS ONE, 3, e1904.
  • Degenhardt, J., Hiltpold, I., Kollner, T.G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B.E., Ellersieck, M.R. & Turlings, T.C.J. (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences of the United States of America, 106, 1321313218.
  • Denno, R.F., Gruner, D.S. & Kaplan, I. (2008) Potential for entomopathogenic nematodes in biological control: A meta-analytical synthesis and Insights from trophic cascade theory. Journal of Nematology, 40, 6172.
  • Dyer, L.A., Dodson, C.D., Beihoffer, J. & Letourneau, D.K. (2001) Trade-offs in antiherbivore defenses in Piper cenocladum: Ant mutualists versus plant secondary metabolites. Journal of Chemical Ecology, 27, 581592.
  • Eben, A. & Barbercheck, M.E. (1997) Host plant and substrate effects on mortality of southern corn rootworm from entomopathogenic nematodes. Biological Control, 8, 8996.
  • Farrell, B.D. & Mitter, C. (1998) The timing of insect/plant diversification: might Tetraopes (Coleoptera : Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? Biological Journal of the Linnean Society, 63, 553577.
  • Fenton, A., Norman, R., Fairbairn, J.P. & Hudson, P.J. (2000) Modelling the efficacy of entomopathogenic nematodes in the regulation of invertebrate pests in glasshouse crops. Journal of Applied Ecology, 37, 309320.
  • Ferguson, C.S., Schroeder, P.C. & Shields, E.J. (1995) Vertical distribution, persistence, and activity of entomopathogenic nematodes (Nematoda, Heterorhabditidae and Steinernematidae) in alfalfa snout beetle (Coleoptera, Curculionidae) infested fields. Environmental Entomology, 24, 149158.
  • Frost, C.J., Appel, M., Carlson, J.E., De Moraes, C.M., Mescher, M.C. & Schultz, J.C. (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecology Letters, 10, 490498.
  • Gold, J.J. & Shore, J.S. (1995) Multiple paternity in Asclepias syriaca using a paired-fruit analysis. Canadian Journal of Botany-Revue Canadienne De Botanique, 73, 12121216.
  • Hairston, N.G., Smith, F.E. & Slobodkin, L.B. (1960) Community structure, population control, and competition. American Naturalist, 94, 421425.
  • Halitschke, R., Kessler, A., Kahl, J., Lorenz, A. & Baldwin, I.T. (2000) Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia, 124, 408417.
  • Halitschke, R., Gase, K., Hui, D.Q., Schmidt, D.D. & Baldwin, I.T. (2003) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiology, 131, 18941902.
  • Harfouche, A.L., Shivaji, R., Stocker, R., Williams, P.W. & Luthe, D.S. (2006) Ethylene signaling mediates a maize defense response to insect herbivory. Molecular Plant-Microbe Interactions, 19, 189199.
  • Heil, M. (2008) Indirect defence via tritrophic interactions. New Phytologist, 178, 4161.
  • Heil, M., Delsinne, T., Hilpert, A., Schurkens, S., Andary, C., Linsenmair, K.E., Sousa, M.S. & McKey, D. (2002) Reduced chemical defence in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos, 99, 457468.
  • Hiltpold, I. & Turlings, T.C.J. (2008) Belowground chemical signaling in maize: When simplicity rhymes with efficiency. Journal of Chemical Ecology, 34, 628635.
  • Howe, G.A. & Jander, G. (2008) Plant immunity to insect herbivores. Annual Review of Plant Biology, 59, 4166.
  • Isman, M.B., Duffey, S.S. & Scudder, G.G.E. (1977) Cardenolide content of some leaf-feeding and stem-feeding insects on temperate North-American milkweeds (Asclepia spp). Canadian Journal of Zoology-Revue Canadienne De Zoologie, 55, 10241028.
  • Karban, R. & Baldwin, I.T. (1997) Induced Responses to Herbivory. The University of Chicago Press, Chicago.
  • Kessler, A. & Baldwin, I.T. (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 21412144.
  • Koricheva, J. (2002) Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology, 83, 176190.
  • Koricheva, J., Nykanen, H. & Gianoli, E. (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? American Naturalist, 163, E64E75.
  • Letourneau, D.K. & Barbosa, P. (1999) Ants, stem borers, and pubescence in Endospermum in Papua New Guinea. Biotropica, 31, 295302.
  • Malcolm, S.B. (1991) Cardenolide-mediated interactions between plants and herbivores. Herbivores: Their Interactions with Secondary Metabolites (eds G.A.Rosenthal & M.R.Berenbaum). pp. 251296, Academic Press, San Diego, CA, USA.
  • Malcolm, S.B. & Zalucki, M.P. (1996) Milkweed latex and cardenolide induction may resolve the lethal plant defence paradox. Entomologia Experimentalis Et Applicata, 80, 193196.
  • Matter, S.F. (2001) Effects of above and below ground herbivory by Tetraopes tetraophthalmus (Coleoptera: Cerambycidae) on the growth and reproduction of Asclepias syriaca (Asclepidacae). Environmental Entomology, 30, 333338.
  • Mauricio, R. (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. The American Naturalist, 151, 2028.
  • Millar, L.C. & Barbercheck, M.E. (2002) Effects of tillage practices on entomopathogenic nematodes in a corn agroecosystem. Biological Control, 25, 111.
  • Mooney, K.A., Halitschke, R., Kessler, A. & Agrawal, A.A. (2010) Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 327, 16421644.
  • Morris, W.F., Traw, M.B. & Bergelson, J. (2006) On testing for a tradeoff between constitutive and induced resistance. Oikos, 112, 102110.
  • Murdoch, W.W. (1966) Community structure population control and competition -a critique. American Naturalist, 100, 219.
  • Polis, G.A. (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos, 86, 315.
  • Preisser, E.L. (2003) Field evidence for a rapidly cascading underground food web. Ecology, 84, 869874.
  • Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N. & Weis, A.E. (1980) Interactions among three trophic levels: influence of plant on interactions between insect herbivores and natural enemies. Annual Review of Ecology and systematics, 11, 4165.
  • Ram, K., Gruner, D.S., McLaughlin, J.P., Preisser, E.L. & Strong, D.R. (2008) Dynamics of a subterranean trophic cascade in space and time. Journal of Nematology, 40, 8592.
  • Rasmann, S. & Agrawal, A.A. (2008) In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiology, 146, 875880.
  • Rasmann, S. & Agrawal, A.A. (2009) Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traits. Current Opinion in Plant Biology, 12, 473478.
  • Rasmann, S., Kollner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J. & Turlings, T.C.J. (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, 434, 732737.
  • Rasmann, S., Agrawal, A.A., Cook, C.S. & Erwin, C.A. (2009) Cardenolides, induced responses in shoots and roots, and interactions between above and belowground herbivores in the milkweeds (Asclepias spp.). Ecology, 90, 23932404.
  • Rosenheim, J.A., Kaya, H.K., Ehler, L.E., Marois, J.J. & Jaffee, B.A. (1995) Intraguild predation among biological-control agents – theory and evidence. Biological Control, 5, 303335.
  • Rudgers, J.A., Strauss, S.Y. & Wendel, J.E. (2004) Trade-offs among anti-herbivore resistance traits: Insights from Gossypieae (Malvaceae). American Journal of Botany, 91, 871880.
  • Schmitz, O.J., Hamback, P.A. & Beckerman, A.P. (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. American Naturalist, 155, 141153.
  • Schroeder, P.C., Ferguson, C.S., Shields, E.J. & Villani, M.G. (1994) Pathogenicity of rhabditid nematodes (Nematoda, Heterorhabditidae and Steinernematidae) to alfalfa snout beetle (Coleoptera, Curculionidae) larvae. Journal of Economic Entomology, 87, 917922.
  • Shields, E.J., Testa, A., Miller, J.M. & Flanders, K.L. (1999) Field efficacy and persistence of the entomopathogenic nematodes Heterorhabditis bacteriophora‘Oswego’ and H. bacteriophora‘NC’ on alfalfa snout beetle larvae (Coleoptera : Curculionidae). Environmental Entomology, 28, 128136.
  • Soluk, D.A. & Collins, N.C. (1988) Synergistic interactions between fish and stoneflies – facilitation and interference among stream predators. Oikos, 52, 94100.
  • Steward, J.L. & Keeler, K.H. (1988) Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae). Oikos, 53, 7986.
  • Strauss, S.Y., Rudgers, J.A., Lau, J.A. & Irwin, R.E. (2002) Direct and ecological costs of resistance to herbivory. Trends in Ecology & Evolution, 17, 278285.
  • Strong, D.R., Kaya, H.K., Whipple, A.V., Child, A.L., Kraig, S., Bondonno, M., Dyer, K. & Maron, J.L. (1996) Entomopathogenic nematodes: Natural enemies of root-feeding caterpillars on bush lupine. Oecologia, 108, 167173.
  • Strong, D.R., Whipple, A.V., Child, A.L. & Dennis, B. (1999) Model selection for a subterranean trophic cascade: root-feeding caterpillars and entomopathogenic nematodes. Ecology, 80, 27502761.
  • Stuart, R.J. & Gaugler, R. (1994) Patchiness in populations of entomopathogenic nematodes. Journal of Invertebrate Pathology, 64, 3945.
  • Thaler, J.S. (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature, 399, 686688.
  • Ton, J., D’Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B. & Turlings, T.C.J. (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant Journal, 49, 1626.
  • Woodring, J.L. & Kaya, H.K. (1988) Steinernematid and Heterorhabditid Nematodes: a Handbook of Techniques. Arkansas Agricultural Experiement Station, Fayettville, AK, USA.
  • Zalucki, M.P., Clarke, A.R. & Malcolm, S.B. (2002) Ecology and behavior of first instar larval Lepidoptera. Annual Review of Entomology, 47, 361393.
  • Zangerl, A.R. & Bazzaz, F.A. (1992) Theory and pattern in plant defense allocation. Plant Resistance to Herbivores and Pathogens: Ecology, Evolution and Genetics (eds R.S.Fritz & E.L.Simms). pp. 363391, University of Chicago Press, Chicago.