Identifying population- and community-level mechanisms of diversity–stability relationships in experimental grasslands

Authors

  • Christiane Roscher,

    Corresponding author
    1. UFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, 06120 Halle, Germany
    Search for more papers by this author
  • Alexandra Weigelt,

    1. Institute of Biology I, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
    Search for more papers by this author
  • Raphael Proulx,

    1. Max Planck Institute for Biogeochemistry, POB 100164, 07701 Jena, Germany
    Search for more papers by this author
    • Present address: Chaire UQTR en Biologie Systémique de la Conservation, Université du Québec à Trois-Rivières, 3351 Des Forges, Trois-Rivières, QC, G9A 5H7, Canada.

  • Elisabeth Marquard,

    1. UFZ, Helmholtz Centre for Environmental Research, Department of Conservation Biology, Permoserstrasse 15, 04318 Leipzig, Germany
    Search for more papers by this author
  • Jens Schumacher,

    1. Institute of Stochastics, University of Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
    Search for more papers by this author
  • Wolfgang W. Weisser,

    1. Institute of Ecology, University of Jena, Dornburger Strasse 159, 07743 Jena, Germany
    Search for more papers by this author
  • Bernhard Schmid

    1. Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
    Search for more papers by this author

Correspondence author. E-mail: christiane.roscher@ufz.de

Summary

1. While positive effects of biodiversity on temporal stability of communities have been demonstrated in theoretical and empirical studies, diversity–stability relationships at the population level remain poorly understood.

2. We investigated temporal variability of plant populations in experimental grassland plots of varying species richness (1, 2, 4, 8, 16–60 species), functional group richness and composition (presence/absence of legumes × grasses × small herbs × tall herbs) in a long-term biodiversity experiment from 2003 to 2009 (‘Jena Experiment’).

3. Average population stability, defined as the reciprocal of the coefficient of variation of above-ground biomass production over time, differed largely between species but was generally higher in grasses and small herbs than in legumes and tall herbs. Furthermore, population stability was positively related to a species’ proportional contribution to community biomass. Thus, an increasing number of subordinate species explained lower average population stabilities at higher diversity levels.

4. A negative covariance (CV) across all species-richness levels suggested negatively correlated species dynamics. Species belonging to different functional groups fluctuated asynchronously, while species dynamics within functional groups were more synchronous. Community-wide species synchrony decreased with increasing species richness, and temporal stability at the community level increased.

5.Synthesis: Our results suggest that diversity–stability relationships are driven by fluctuations in the population biomass of individual species which are less synchronized in more diverse than in less diverse mixtures and monocultures. Dominant plant species tend to be more stabilized than subdominant species, independently of community species richness. However, asynchrony of population dynamics outweighs decreasing population stability with increasing species richness, resulting in higher temporal stability at the plant community level.

Ancillary