SEARCH

SEARCH BY CITATION

References

  • Allen, J.R.L. (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and southern North Sea coasts of Europe. Quaternary Science Reviews, 19, 11551231.
  • Arp, W.J., Drake, B.G., Pockman, W.T., Curtis, P.S. & Whigham, D.F. (1993) Interactions between C3 and C4 salt marsh plant species during four years exposure to elevated atmospheric CO2. Vegetatio, 104/105, 133143.
  • Bertness, M.D. (1985) Fiddler crab regulation of Spartina alterniflora production in a New England salt marsh. Ecology, 66, 10421055.
  • Blum, L.K. (1993) Spartina alterniflora root dynamics in a Virginia Marsh. Marine Ecology Progress Series, 102, 169178.
  • Broome, S.W., Mendelssohn, I.A. & McKee, K.L. (1995) Relative growth of Spartina patens (Ait.) Muhl. And Scirpus olneyi gray occurring in a mixed stand as affected by salinity and flooding depth. Wetlands, 15, 2030.
  • Burdick, D.M. (1989) Root aerenchyma development in Spartina patens in response to flooding. American Journal of Botany, 76, 777780.
  • Cahoon, D.R., Ford, M.A. & Hensel, P.F. (2004) Ecogeomorphology of Spartina patens-dominated tidal marshes: soil organic matter accumulation, marsh elevation dynamics, and disturbance. The Ecogeomorphology of Tidal Marshes, Coastal and Estuarine Studies, Vol. 59 (eds S. Fagherazzi, M. Marani & L.K. Blum), pp. 247266. American Geophysical Union, Washington, DC, USA.
  • Cahoon, D.R., Guntenspergen, G.R. & Baird, S. (2010) Do annual prescribed fires enhance or slow the loss of coastal marsh habitat at Blackwater National Wildlife Refuge? Final Report to Joint Fire Science Program, http://www.firescience.gov/projects/06-2-1-35/project/06-2-1-35_blackwater_burn_final_report_mar_31_2010.pdf.
  • Cahoon, D.R., Hensel, P.F., Spencer, T., Reed, D.J., McKee, K.L. & Saintilan, N. (2006) Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. Wetlands and Natural Resource Management: Ecological Studies, Vol. 190 (eds J.T. A Verhoeven, B. Beltman, R. Bobbink & D.F. Whigham), pp. 271292. Springer, Berlin.
  • D’Alpaos, A., Lanzoni, S., Mudd, S.M. & Fagherazzi, S. (2006) Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine, Coastal and Shelf Science, 69, 311324.
  • D’Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. (2007) Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research, 112, F01008.
  • Day, J., Ibanez, C., Scarton, F., Pont, D., Hensel, P., Day, J. & Lane, R. (2011) Sustainability of Mediterranean deltaic and lagoon wetlands with sea-level rise: the importance of river input. Estuaries and Coasts, 34, 483493.
  • Eleuterius, L.N. (1972) The marshes of Mississippi. Castanea, 37, 153168.
  • Erickson, J.E., Megonigal, J.P., Peresta, G. & Drake, B.G. (2007) Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Global Change Biology, 13, 202215.
  • Fagherazzi, S., Kirwan, M.L., Mudd, S.M., Guntenspergen, G.R., Temmerman, S., D’Alpaos, A. et al. (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Reviews of Geophysics, 50, RG1002.
  • Friedrichs, C.T. & Perry, J.E. (2001) Tidal salt marsh morphodynamics: a synthesis. Journal of Coastal Research, 27, 737.
  • Gallagher, J.L., Wolf, P.L. & Pfieffer, W.J. (1984) Rhizome and root growth rates and cycles in protein and carbohydrate concentrations in Georgia Spartina alterniflora Loisel. Plants. American Journal of Botany, 71, 165169.
  • Gough, L. & Grace, J.B. (1998) Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States. Oecologia, 117, 527535.
  • Hackney, C.T. (1987) Factors affecting accumulation or loss of macroorganic matter in salt marsh sediments. Ecology, 68, 11091113.
  • Hensel, P.F., Scott, G.A., Allen, A.L., Gill, S.K., Cahoon, D.R., Nemerson, D. & Guntenspergen, G.R. (2008) Geodetic and tidal datums: tying wetland surface elevation change to local water levels. 2008 Ocean Sciences Meeting Abstract. American Geophysical Union, Orlando, FL, USA.
  • Kirwan, M.L. & Guntenspergen, G.R. (2010) The influence of tidal range on the stability of coastal marshland. Journal of Geophysical Research - Earth Surface, 115, F02009.
  • Kirwan, M.L. & Murray, A.B. (2007) A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences, 104, 61186122.
  • Kirwan, M.L., Guntenspergen, G.R., D’Alpaos, A., Morris, J.T., Mudd, S.M. & Temmerman, S. (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37, L23401.
  • Kirwan, M.L., Murray, A.B., Donnelly, J.P. & Corbett, D.R. (2011) Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology, 39, 507510.
  • Kirwan, M.L., Christian, R.R., Blum, L.K. & Brinson, M.M. (2012) On the relationship between sea level and Spartina alterniflora production. Ecosystems, doi: 10.1007/s10021-011-9498-7.
  • Langley, J.A. & Megonigal, J.P. (2010) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature, 466, 9699.
  • Langley, J.A., Mckee, K.L., Cahoon, D.R., Cherry, J.A. & Megonigal, J.P. (2009) Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences, 106, 61826186.
  • Lonard, R.I., Judd, F.W. & Stalter, R. (2010) The biological flora of coastal dunes and wetlands: Spartina patens (W. Aiton) G.H. Muhlenberg. Journal of Coastal Research, 26, 935946.
  • Lorenzo-Trueba, J., Voller, V.R., Paola, C. & Twilley, R.R. (2010) Toward a model framework for sedimentary delta growth that accounts for biological processes. Abstract B33D-0427. AGU Fall Meeting, San Francisco, CA, USA.
  • Marani, M., Lanzoni, S., Silvestri, S. & Rinaldo, A. (2004) Tidal landforms, patterns of halophytic vegetation and the fate of the lagoon of Venice. Journal of Marine Systems, 51, 191210.
  • Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. (2007) Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophysical Research Letters, 34, L11402.
  • Marion, C., Anthony, E.J. & Trentesaux, A. (2009) Short-term (<=2 yrs) estuarine mudflat and saltmarsh sedimentation: high-resolution data from ultrasonic altimetery, rod surface-elevation table, and filter traps. Estuarine, Coastal and Shelf Science, 83, 475484.
  • Mariotti, G. & Fagherazzi, S. (2010) A numerical model for the coupled long-term evolution of salt marshes and tidal flats. Journal of Geophysical Research, 115, F01004.
  • McKee, K.L., Cahoon, D.R. & Feller, I.C. (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16, 545556.
  • Meert, D.R. & Hester, M.W. (2010) Response of a Louisiana oligohaline marsh plant community to nutrient availability and disturbance. Journal of Coastal Research, Special Issue 54, 174185.
  • Morris, J.T. (2007) Estimating net primary production of salt-marsh macrophytes. Principles and Standards for Measuring Primary Production (eds (T.J. Fahey & A.K. Knapp), pp. 106119. Oxford University Press, New York.
  • Morris, J.T. & Haskins, B. (1990) A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology, 71, 22092217.
  • Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B. & Cahoon, D.R. (2002) Responses of coastal wetlands to rising sea level. Ecology, 83, 28692877.
  • Mudd, S.M., D’Alpaos, A. & Morris, J.T. (2010) How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research, 115, F03029.
  • Mudd, S.M., Howell, S.M. & Morris, J.T. (2009) Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science, 82, 377389.
  • Mudd, S.M., Fagherazzi, S., Morris, J.T. & Furbish, D.J. (2004) Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. The Ecogeomorphology of Tidal Marshes (eds S. Fagherazzi, A. Marani & L.K. Blum), pp. 165187. Coastal and Estuarine Monograph Series. American Geophysical Union, Washington, DC, USA.
  • Nuttle, W.K. (1988) The extent of lateral water movement in the sediments of a New England salt marsh. Water Resources Research, 24, 20772085.
  • Nyman, J.A., DeLaune, R.D., Roberts, H.H. & Patrick Jr, W.H. (1993) Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series, 96, 269279.
  • Nyman, J.A., Carloss, M., DeLaune, R.D. & Patrick Jr, W.H. (1994) Erosion rather than plant dieback as the mechanism of marsh loss in an estuarine marsh. Earth Surface Processes and Landforms, 19, 6984.
  • Nyman, J.A., Walters, R.J., Delaune, R.D. & Patrick, W.H. (2006) Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science, 69, 370380.
  • Redfield, A.C. (1965) Ontogeny of a salt marsh estuary. Science, 147, 5055.
  • Reed, D.J. (1995) The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms, 20, 3948.
  • Saunders, C.J., Megonigal, J.P. & Reynolds, J.F. (2006) Comparison of belowground biomass in C3- and C4-dominated mixed communities in a Chesapeake Bay brackish marsh. Plant and Soil, 280, 305322.
  • Stevenson, J.C., Kearney, M.S. & Pendleton, E.C. (1985) Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geology, 67, 212235.
  • Syvitsky, J.P.M., Kettner, A.J., Overeem, I., Hutton, E.W.H., Hannon, M.T., Brakenridge, G.R., Day, J., Vorosmarty, C., Saito, Y., Giosan, L. & Nicholls, R.J. (2009) Sinking deltas due to human activities. Nature Geoscience, 2, 681686.
  • Teal, J.M. & Howes, B.L. (1996) Interannual variability of a saltmarsh ecosystem. Limnology and Oceanography., 41, 802809.
  • Turner, R.E., Swenson, E.M. & Milan, C.S. (2000) Organic and inorganic contributions to vertical accretion in salt marsh sediments. Concepts and Controversies in Tidal Marsh Ecology (eds M.P. Weinstein & D.A. Kreeger), pp. 583595. Kluwer Academic Press, Dordrecht, The Netherlands.
  • Turner, R.E., Swenson, E.M., Milan, C.S., Lee, J.M. & Oswald, T.A. (2004) Below-ground biomass in healthy and impaired salt marshes. Ecological Research, 19, 2935.
  • Valiela, I., Howes, B., Howarth, R., Giblin, A., Foreman, K., Teal, J. & Hobbie, J. (1982) The regulation of primary production and decomposition in a salt marsh ecosystem. Wetlands: Ecology and Management (eds B. Gopal, R.E. Turner, R.G. Wetzel & D.E. Whigham), pp. 151168. Nat. Inst. Of Ecology, Jaipur, India.
  • Valiela, I., Wilson, J., Buchsbaum, R., Rietsma, C., Bryant, D., Foreman, K. & Teal, J. (1984) Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bulletin of Marine Science, 35, 261269.
  • Visser, J.M., Sasser, C.E. & Cade, B.S. (2006) The effect of multiple stressors on salt marsh end-of-season biomass. Estuaries and Coasts, 29, 328339.
  • Voss, C.M. (2009) Responses of dominant marsh macrophytes to inundation and disturbance and assessing marsh ecosystem services. MS thesis, East Carolina University, Greenville, NC, USA, 251 pp.
  • Walling, D.E. & Fang, D. (2003) Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 39, 111126.