SEARCH

SEARCH BY CITATION

References

  • 1
    Schatzmann HJ. ATP-dependent Ca2+-extrusion from human red cells. Experientia 1966; 22: 3648.
  • 2
    Skou JC. Nobel Lecture. The identification of the sodium pump. Biosci Rep 1998; 18: 15569.
  • 3
    Xie SX, Stone DK, Racker E. Purification of a vanadate-sensitive ATPase from clathrin-coated vesicles of bovine brain. J Biol Chem 1989; 264: 17104.
  • 4
    Petrovic S, Wang Z, Ma L et al. Colocaliztion of the apical Cl/HCO3-exchanger PAT1 and gastric H-K-ATPase in stomach parietal cells. Am J Physiol Gastrointest Liver Physiol 2002; 283: G120716.
  • 5
    Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Acta 1985: 9; 26787.
  • 6
    Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983; 305: 1478.
  • 7
    Parker JC, Hoffman JF. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J Gen Physiol 1967; 50: 893916.
  • 8
    Wittam R, Ager M. The connection between active cation transport and metabolism in erythrocytes. Biochem J 1965; 97: 21427.
  • 9
    Dahl JL, Hokin LE. The sodium-potassium adenosinetriphosphatase. Annu Rev Biochem 1974; 43: 32756.
  • 10
    Al-Habori M. Microcompartmentation, metabolic channeling and carbohydrate metabolism. Int J Biochem Cell Biol 1995; 27: 12332.
  • 11
    Lynch RM, Paul RJ. Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Science 1983; 222: 13446.
  • 12
    Paul RJ, Bauer M, Pease W. Vascular smooth muscle: Aerobic glycolysis linked to sodium and potassium transport processes. Science 1979; 206: 14146.
  • 13
    Weiss JN, Lamp ST. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science 1987; 238: 679.
  • 14
    Han JW, Thieleczek R, Varsányi M, Heilmeyer LMG, Jr. Compartmentalized ATP synthesis in skeletal muscle triads. Biochemistry 1992; 31: 37784.
  • 15
    Lipton P, Robacker K. Glycolysis and brain function: [K+]o stimulation of protein synthesis and K+ uptake require glycolysis. Fed Proc 1983; 42: 287580.
  • 16
    Lynch RM, Balaban RS. Energy metabolism of renal cell line A6 and MDCK: regulation by Na-K-ATPase. Am J Physiol 1987; 252: (Cell Physiol 21): C225.
  • 17
    Balaban RS, Bader JP. Studies on the relationship between glycolysis and (Na+ + K+)-ATPase in cultured cells. Biochim Biophys Acta 1984; 804: 41926.
  • 18
    Minaschek G, Gröschel-Stewart U, Blum S, Bereiter-Hahn J. Microcompartmentation of glycolytic enzymes in cultured cells. Eur J Cell Biol 1992; 58: 41828.
  • 19
    Knull HR, Walsh JL. Association of glycolytic enzymes with the cytoskeleton. Curr Top Cell Regul 1992; 33: 1530.
  • 20
    Ronquist G. Metabolism and membrane permeability of erythrocytes and thrombocytes. 1st International Symposium, Vienna, June 17–20. Herausgeber: Erwin Deutsch, Eckehart Gerlach, Kurt Moser. Stuttgart: Georg Thieme Verlag, 1968; 398402.
  • 21
    Hille B, Armstrong CM, MacKinnon R. Ion channels: from idea to reality. Nat Med 1999; 5: 11059.
  • 22
    Rojas CV, Wang JZ, Schwartz LS, Hoffman EP, Powell BR, Brown RH, Jr. A met-to-val mutation in the skeletal muscle Na+ channel alpha-subunit in hyperkalaemic periodic paralysis. Nature 1991; 354: 3879.
  • 23
    Rudolph JA, Spier SJ, Byrns G, Rojas CV, Bernoco D, Hoffman EP. Periodic paralysis in quarter horses: a sodium channel mutation disseminated by selective breeding. Nat Genet 1992; 2: 1447.
  • 24
    Naylor JM. Selection of quarter horses affected with hyperkalemic periodic paralysis by show judges. J Am Vet Med Assoc 1994; 204: 9268.
  • 25
    MacLennan DH, Phillips MS. Malignant hyperthermia. Science 1992; 256: 78994.
  • 26
    Pressman BC. Biological applications of ionophores. Annu Rev Biochem 1976; 45: 50130.
  • 27
    Plishker GA, Gitelman HJ, Appel SH. Myotonic muscular dystrophy: altered calcium transport in erythrocytes. Science 1978; 200: 3235.
  • 28
    Mawatari S, Schonberg M, Olarte M. Biochemical abnormalities of erythrocyte membranes in Duchenne dystrophy. Arch Neurol 1976; 33: 48993.
  • 29
    Engström I, Waldenström A, Ronquist G. Ionophore A23187 reduces energy charge by enhanced ion pumping in suspended human erythrocytes. Scand J Clin Lab Invest 1993; 53: 23946.
  • 30
    Gietzen K, Wüthrich A, Bader H. R24571: A new powerful inhibitor of red blood cell Ca2+-transport ATPase and of calmodulin-regulated functions. Biochem Biophys Res Commun 1981; 101: 41825.
  • 31
    Engström I, Waldenström A, Ronquist G. Effects of the ionophore gramicidin D on energy metabolism in human erythrocytes. Scand J Clin Lab Invest 1993; 53: 24752.
  • 32
    Mercer RW, Dunham PB. Membrane-bound ATP fuels the Na/K pump. J Gen Physiol 1981; 78: 54768.
  • 33
    Ronquist G, Ågren G. Formation of adenosine triphosphate by human erythrocyte ghosts. Nature 209: 10901.
  • 34
    Fossel ET, Solomon AK. Membrane mediated link between ion transport and metabolism in human red cells. Biochim Biophys Acta 1977; 464: 8292.
  • 35
    Fossel ET, Solomon AK. Ouabain-sensitive interaction between human red cell membrane and glycolytic enzyme complex in cytosol. Biochim Biophys Acta 1978; 510: 99111.
  • 36
    Weber JP, Bernhard SA. Transfer of 1,3-diphosphoglycerate between glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase via an enzyme-substrate-enzyme complex. Biochemistry 1982; 21: 418994.
  • 37
    Srivastava DK, Bernhard SA. Mechanism of transfer of reduced nikotinamide adenine dinucleotide among dehydrogenases. Transfer rates and equilibria with enzyme-enzyme complexes. Biochemistry 1987; 26: 12406.
  • 38
    Proverbio F, Hoffman JF. Membrane compartmentalized ATP and its preferential use by the Na, K-ATPase of human red cell ghosts. J Gen Physiol 1977; 69: 60532.
  • 39
    Martinussen HJ, Waldenström A, Ronquist G. Functional and biochemical effects of a K+-ionophore on the isolated perfused rat heart. Acta Physiol Scand 1993; 147: 2215.
  • 40
    Waldenström A, Fohlman J, Ilbäck NG, Ronquist G, Hällgren R, Gerdin B. Coxsackie B3 myocarditis induces a decrease in energy charge and accumulation of hyaluronan in the mouse heart. Eur J Clin Invest 1993; 23: 27782.
  • 41
    Monti M, Hedner P, Ikomi-Kumm J. Erythrocyte thermogenesis in hyperthyroid patients: microcalorimetric investigation of sodium-potassium and cell metabolism. Metabolism 1987; 36: 1559.
  • 42
    Gallice P, Kovacie H, Baz M. Sodium pump activity in uremic erythrocytes: a microcalorimetric study. Int J Artif Organs 1992; 15: 1358.
  • 43
    Engström I, Waldenström A, Nilsson-Ehle P, Ronquist G. Dissipation of the calcium gradient in human erythrocytes results in increased heat production. Clin Chim Acta 1993; 219: 11322.
  • 44
    Pettersson L, Frithz G, Ronquist G. Direct effect of insulin on 45calcium uptake in human erythrocytes. J Int Med 1994; 236: 197201.
  • 45
    Fuchs P, Kohn A. Changes induced in cell membranes absorbing animal viruses, bacteriophages, and colicins. Curr Top Microbiol Immun 1983; 105: 5799.
  • 46
    Rosenthal KS, Leyther MD, Barisas BG. Herpes simplex virus binding and entry modulate cell surface protein mobility. J Virol 1984; 49: 9803.
  • 47
    Fuchs P, Gruder E, Gitelman J, Kohn A. Nature of permeability changes in membrane of HeLa cells absorbing Sendai virus. J Cell Physiol 1980; 103: 2718.
  • 48
    Pasternak CA, Micklem KJ. Virally induced alterations in cellular permeability: A basis of cellular and physiological damage? Biosci Rep 1981; 1: 43148.
  • 49
    Fuchs P, Spiegelstein M, Chaimson M, Gitelman J, Kohn A. Early changes in the membrane of cell absorbing Sendai virus under conditions of fusion. J Cell Physiol 1978; 95: 22334.
  • 50
    Kemp HG. Left ventricular function in patients with the anginal syndrome and normal coronary arteries. Am J Cardiol 1973; 32: 3756.
  • 51
    Opherk D, Zebe H, Weihe E et al. Reduced coronary dilatory capacity and ultrastructural changes of the myocardium in patients with angina pectoris but normal coronary arteriograms. Circulation 1981; 63: 81725.
  • 52
    Cannon RO, Bonow RO, Bacharach SL et al. Left ventricular dysfunction in patients with angina pectoris, normal epicardial coronary arteries, and abnormal vasodilatory reserve. Circulation 1985; 71: 21826.
  • 53
    Waldenström A, Ronquist G, Lagerqvist B. Angina pectoris patients with normal coronary angiograms but abnormal thallium perfusion scan exhibit low myocardial and skeletal muscle energy charge. J Intern Med 1992; 231: 32731.
  • 54
    Behan PO, Behan WMH. Postviral fatigue syndrome. CRC Crit Rev Neurobiol 1988; 4: 15778.
  • 55
    Atkinson D, Small DM. Recombinant lipoproteins: implications for structure and assembly of native lipoproteins. Annu Rev Biophys Biophys Chem 1986; 15: 40356.
  • 56
    Martin I, Defrise-Quertain F, Decroly E, Vandenbranden M, Brasseur R, Ruysschaert JM. Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. Biochim Biophys Acta 1993; 1145: 12433.
  • 57
    Fujii G, Horvath S, Woodward S, Eiserling F, Eisenberg D. A molecular model for membrane fusion based on solution studies of an amphiphilic peptide from HIV gp41. Protein Sci 1992; 1: 145464.
  • 58
    Hardy J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci 1997; 20: 1549.
  • 59
    Joachim CL, Duffy LK, Selkoe D. Protein chemical and immunocytochemical studies of meningovascular beta-amyloid protein in Alzheimer's disease and normal aging. Brain Res 1988; 474: 10011.
  • 60
    Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek C. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 1987; 235: 87780.
  • 61
    Arispe N, Pollard HB, Rojas E. Giant multilevel cation channels formed by Alzheimer disease amyloid β-protein [AβP-(1–40)] in bilayer membranes. Proc Natl Acad Sci 1993; 90: 10 5737.
  • 62
    Fraser PE, Lévesque L, McLachlan DR. Biochemistry of Alzheimer's disease amyloid plaques. Clin Biochem 1993; 26: 33949.
  • 63
    Prusiner SB. Biology and genetics of prion diseases. Annu Rev Microbiol 1994; 48: 65586.
  • 64
    Pillot T, Goethals M, Vanloo B et al. Fusogenic properties of the C-terminal domain of the Alzheimer beta-amyloid peptide. J Biol Chem 1996; 271: 28 75765.
  • 65
    Selkoe DJ. Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 1994; 17: 489517.
  • 66
    Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120: 8859.
  • 67
    Engström I, Ronquist G, Pettersson L, Waldenström A. Alzheimer amyloid β-peptides exhibit ionophore-like properties in human erythrocytes. Eur J Clin Invest 1995; 25: 4716.
  • 68
    Sanderson KL, Butler L, Ingram VM. Aggregates of a β-amyloid peptide are required to induce calcium currents in neuron-like human teratocarcinoma cells: relation to Alzheimer's disease. Brain Res 1997; 744: 714.
  • 69
    Vora S, Davidson M, Seamon C et al. Heterogeneity of the molecular lesions in inherited phosphofructokinase deficiency. J Clin Invest 1983; 72: 19952006.
  • 70
    Tarui S, Okuno G, Ikura Y et al. Phosphofructokinase deficiency in skeletal muscle. Biochem Biophys Res Commun 1965; 19: 51723.
  • 71
    Ronquist G, Rudolphi O, Engström I, Waldenström A. Familial phosphofructokinase deficiency is associated with a disturbed calcium homeostasis in erythrocytes. J Int Med 2001; 249: 8595.
  • 72
    Waldenström A, Engström I, Ronquist G. Increased erythrocyte content of Ca2+ in patients with Tarui's disease. J Int Med 2001; 249: 97102.