SEARCH

SEARCH BY CITATION

References

  • 1
    Kahn CR, Vicent D, Doria A. Genetics of non-insulin-dependent (type 2) diabetes mellitus. Annu Rev Med 1996; 47: 50931.
  • 2
    DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev 1997; 5: 177269.
  • 3
    Shepherd PR, Kahn BB. Glucose transporters and insulin action: implications for insulin resistance and diabetes mellitus. N Engl J Med 1999; 341: 24857.
  • 4
    Asante-Appiah E, Kennedy BP. Protein tarosine phosphatase: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab 2003; 284: E66370.
  • 5
    Charbonneau H, Tonks NK, Kumar S et al. Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci USA 1989; 86: 52526.
  • 6
    Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BG. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 1992; 68: 54560.
  • 7
    Cheng A, Dube N, Gu F, Tremblay M. Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem 2002; 269: 10509.
  • 8
    Kennedy BP. Role of protein tyrosine phosphatase-1B in diabetes and obesity. Biomed Pharmacother 1999; 53: 46670.
  • 9
    Kennedy BP, Ramachandran C. Protein tyrosine phosphatase-1B in diabetes. Biochem Pharmacol 2000; 60: 87783.
  • 10
    Tonks NK, Diltz CD, Fischer EH. Purification of the major protein-tyrosine-phosphatases of human placenta. Proc Natl Acad Sci USA 1988; 86: 672230.
  • 11
    Ahmad F, Li PM, Meyerovitch J, Goldstein BJ. Osmotic loading of neutralizing antibodies defines a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem 1995; 270: 205038.
  • 12
    Kenner KA, Hill DE, Kusari J. Regulation of protein tyrosine phosphatases by insulin and insulin-like growth factor. J Biol Chem 1993; 268: 2545563.
  • 13
    Kenner KA, Anyanwu E, Olefsky JM, Kusari J. Protein-tyrosine phosphatase 1B is a negative regulator of insulin and insulin-like growth factor-1-stimulated signaling. J Biol Chem 1996; 271: 198106.
  • 14
    Salmeen A, Andersen NJ, Myers MP, Tonks NK, Barford D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell 2000; 276: 140112.
  • 15
    Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov 2002; 1: 696709.
  • 16
    Guan KL, Dixon JE. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 1990; 249: 5536.
  • 17
    Barford D, Flint AG, Tonks NK. Crystal structure of human protein tyrosine phosphatase. Science 1994; 263: 1397404.
  • 18
    Jia Z, Barford D, Flint AJ, Tonks NK. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 1995; 268: 17548.
  • 19
    Echwald SM, Bach H, Vestergaard H et al. A P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro. Diabetes 2002; 51: 16.
  • 20
    Kipfer-Coudreau S, Eberle D, Sahbatou M et al. Single nucleotide polymorphisms of protein tyrosine phosphatase 1B gene are associated with obesity in morbidly obese French subjects. Diabetologia 2004; 47: 127884.
  • 21
    Santaniemi M, Ukkola O, Kesäniemi YA. Tyrosine phosphatase 1B and leptin receptor genes and their interaction in type 2 diabetes. J Intern Med 2004; 256: 4855.
  • 22
    Weng J, Yan J, Huang Z, Sui Y, Xiu L. Missense mutation of Pro387Leu in protein tyrosine phosphatase-1B (PTP-1B) is not associated with type 2 diabetes in a Chinese Han population. Diabetes Care 2003; 26: 2957.
  • 23
    Moreno S, Nurse P. Substrates for p34cdc2: in vivo veritas? Cell 1990; 61: 54951.
  • 24
    Kamijo M, Yasuda H, Yau PM, Yamashita M, Nagahama Y, Ohba Y. Preference of human cdc2 kinase for peptide substrate. Pept Res 1992; 5: 2815.
  • 25
    Flint AJ, Gebbink MF, Franza BR, Hill DE, Tonks NK. Multi-site phosphorylation of the protein tyrosine phosphatase, PTP1B: identification of cell cycle regulated and phorbol ester stimulated sites of phosphorylation. EMBO J 1993; 12: 193746.
  • 26
    Schievella AR, Paige LA, Johnson KA, Hill DE, Erikson RL. Protein tyrosine phosphatase 1B undergoes mitosis-specific phosphorylation on serine. Cell Growth Differ 1993; 4: 23946.
  • 27
    Shifrin VI, Davis RJ, Neel BG. Phosphorylation of protein-tyrosine phosphatase PTP-1b on identical sites suggests activation of a common signaling pathway during mitosis and stress response in mammalian cells. J Biol Chem 1997; 272: 295762.
  • 28
    Klupa T, Nam M, Antonellis A et al. Examination of 3 candidate genes on 20q13.1, a region linked with type 2 diabetes (Abstract). Diabetes 2000; 49(Suppl. 1): A201.
  • 29
    Ahmad F, Azevedo JL, Cortright R, Dohm GL, Goldstein BJ. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest 1997; 100: 44958.
  • 30
    McGuire MC, Field RM, Nyomba BL et al. Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulin-resistant humans. Diabetes 1991; 40: 93942.
  • 31
    Kusari J, Kenner KA, Suh KI, Hill DE, Henry RR. Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance. J Clin Invest 1994; 93: 115662.
  • 32
    Worm D, Vinten J, Staehr P, Henriksen JE, Handberg A, Beck-Nielsen H. Altered basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from NIDDM patients compared with control subjects. Diabetologia 1996; 39: 120814.
  • 33
    Cheung A, Kusari J, Jansen D, Bandyopadhyay D, Kusari A, Bryer-Ash M. Marked impairment of protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type 2 diabetes mellitus. J Lab Clin Med 1999; 134: 11523.
  • 34
    Bleyle LA, Peng Y, Ellis C, Mooney RA. Dissociation of PTPase levels from their modulation of insulin receptor signal transduction. Cell Signal 1999; 11: 71925.
  • 35
    Tao J, Malbon CC, Wang H. Insulin stimulates tyrosine phosphorylation and inactivation of protein tyrosine phosphatase 1B in vivo. J Biol Chem 2001; 276: 295205.
  • 36
    Elchebly M, Payett P, Michaliszyn E et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 15448.
  • 37
    Brown-Simmer S, Johnson KA, Lawrence JB et al. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B. Proc Natl Acad Sci USA 1990; 87: 514852.
  • 38
    Lee JH, Reed DR, Li WD et al. Genome scan for human obesity and linkage to markers in 20q13. Am J Hum Genet 1999; 64: 196209.
  • 39
    Lembertas AV, Perusse L, Chagnon YC et al. Identification of an obesity gene quantitative trait locus on mouse chromosome 2 and evidence of linkage to body fat and insulin on the human homologous region 20q. J Clin Invest 1997; 100: 12407.
  • 40
    Ghosh S, Watanabe RM, Valle TT et al. The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. An autosomal genome scan for genes that predispose to type 2 diabetes. Am J Hum Genet 2000; 67: 117485.
  • 41
    Ji L, Malecki M, Warram JH, Yang Y, Rich SS, Krolewski AS. New susceptibility locus for NIDDM is localized to human chromosome 20q. Diabetes 1997; 46: 87681.
  • 42
    Klupa T, Malecki MT, Pezzolesi M et al. Further evidence for a susceptibility locus for type 2 diabetes on chromosome 20q13.1-q13.2. Diabetes 2000; 49: 22126.
  • 43
    Malecki MT, Antonellis A, Casey P et al. Exclusion of the hepatocyte nuclear factor 4 as a candidate gene for late-onset NIDDM linked with chromosome 20q. Diabetes 1998; 47: 9702.
  • 44
    Zouali H, Hani EH, Philippi A et al. A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. Hum Mol Genet 1997; 6: 14018.
  • 45
    Mok A, Cao H, Zinman B et al. A single nucleotide polymorphism in protein tyrosine phosphatase PTP-1B is associated with protection from diabetes or impaired glucose tolerance. J Clin Endocrinol Metab 2002; 87: 7247.
  • 46
    Di Paola R, Frittitta L, Miscio G et al. A variation in 3′UTR of hPTP1B increases specific gene expression and associates with insulin resistance. Am J Hum Genet 2002; 70: 80612.
  • 47
    Santaniemi M, Ukkola O, Kesäniemi YA. Tyrosine phosphatase 1B and leptin receptor genes and their interaction in type 2 diabetes. J Intern Med 2004; 256: 4855.
  • 48
    The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus ADA. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997; 20: 118397.
  • 49
    Brown-Shimer S, Johnson KA, Hill DE, Bruskin AM. Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Res 1992; 52: 47882.
  • 50
    Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 2002; 3: 3917.
  • 51
    Colhoun HM, McKeigue PM, DaveySmith G. Problems of reporting genetic associations with complex outcomes. Lancet 2003; 361: 598604.
  • 52
    Cardon LR, Palmer LJ. Population stratification and spurious allelic associations. Lancet 2003; 361: 598604.
  • 53
    Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-anlysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 1438.
  • 54
    Ioannidis JPA, Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG. Genetic associations in large versus small studies: an empirical assessment. Lancet 2003; 361: 56771.
  • 55
    Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 2417.
  • 56
    Rondinone CM, Trevillyan JM, Clampit J et al. Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. Diabetes 2002; 51: 240511.
  • 57
    Gum RJ, Gaede LL, Koterski SL et al. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes 2003; 52: 218.
  • 58
    Shimizu S, Ugi S, Maegawa H et al. Protein-tyrosine phosphatase 1B is a new activator for hepatic lipogenesis via sterol regulatory element-binding protein-1 gene expression. J Biol Chem 2003; 44: 43095101.
  • 59
    Hassid A, Huang S, Yao J. Role of PTP-1B in aortic smooth muscle cell motility and tyrosine phosphorylation of focal adhesion proteins. Am J Physiol 1999; 277: H1928.
  • 60
    Altshuler D, Hirschhorn JN, Klannemark M et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26: 7680.