SEARCH

SEARCH BY CITATION

References

  • 1
    Selye H. A syndrome produced by diverse nocuous agents. Nature 1936; 138: 326.
  • 2
    Kannan H, Hayashida Y, Yamashita H. Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats. Am J Physiol 1989; 256 (Pt 2): R132530.
  • 3
    Zerbe RL, Bayorh MA, Feuerstein G. Vasopressin: an essential pressor factor for blood pressure recovery following hemorrhage. Peptides 1982; 3: 50914.
  • 4
    Darlington DN, Barraclough CA, Gann DS. Hypotensive hemorrhage elevates corticotropin-releasing hormone messenger ribonucleic acid (mRNA) but not vasopressin mRNA in the rat hypothalamus. Endocrinology 1992; 130: 12818.
  • 5
    Brown MR, Gray TS, Fisher LA. Corticotropin-releasing factor receptor antagonist: effects on the autonomic nervous system and cardiovascular function. Regul Pept 1986; 16: 3219.
  • 6
    Schiltz JC, Hoffman GE, Stricker EM, Sved AF. Decreases in arterial pressure activate oxytocin neurons in conscious rats. Am J Physiol 1997; 273 (Pt 2): 147483.
  • 7
    Benetos A, Gavras I, Gavras H. Norepinephrine applied in the paraventricular hypothalamic nucleus stimulates vasopressin release. Brain Res 1986; 381: 3226.
  • 8
    Share L. Blood pressure, blood volume, and the release of vasopressin. In: Handbook of Physiology. Endocrinology, Vol. IV, Sect. 7, Pt 1. Bethesda, MD: American Physiological Society, 1974; 24355.
  • 9
    Khanna S, Sibbald JR, Smith DW, Day TA. Initiation of rat vasopressin cell responses to simulated hypotensive hemorrhage. Am J Physiol 1994; 267 (Pt 2): R1142.
  • 10
    Woolf PD. Endocrinology of shock. Ann Emerg Med 1986; 15: 14015.
  • 11
    Molina PE, Malek S, Lang CH, Qian L, Naukam R, Abumrad NN. Early organ-specific hemorrhage induced increases in tissue cytokine content: associated neuro-hormonal and opiate alterations. J Neuroimmunomodul 1997; 4: 2836.
  • 12
    Molina PE, Abumrad NN. Differential effects of hemorrhage and LPS on tissue TNF, IL-1 and associated neuro-hormonal and opioid alterations. Life Sci 2000; 66: 399409.
  • 13
    Höllt V. Opioid peptide processing and receptor selectivity. Annu Rev Pharmacol Toxicol 1986; 26: 5977.
  • 14
    Rogers TJ, Peterson PK. Opioid G protein-coupled receptors: signals at the crossroads of inflammation. Trends Immunol 2003; 24: 11621.
  • 15
    Molina PE. Stress-specific opioid modulation of haemodynamic counter-regulation. Clin Exp Pharmacol Physiol 2002; 29: 24853.
  • 16
    Chang MC, Lee AY, Lin WY, Chen TJ, Shyu MY, Chang WF. Myocardial and peripheral concentrations of beta-endorphin before and following myocardial ischemia and reperfusion during coronary angioplasty. Jpn Heart J 2004; 45: 36571.
  • 17
    Roth-Isigkeit A, Dibbelt L, Schmucker P, Seyfarth M. The immune-endocrine interaction varies with the duration of the inflammatory process in cardiac surgery patients. J Neuroendocrinol 2000; 12: 54652.
  • 18
    Troullos E, Hargreaves KM, Dionne RA. Ibuprofen elevates immunoreactive beta-endorphin levels in humans during surgical stress. Clin Pharmacol Ther 1997; 62: 7481.
  • 19
    Ozarda Ilcol Y, Ozyurt G, Kilicturgay S, Uncu G, Ulus IH. The decline in serum choline concentration in humans during and after surgery is associated with the elevation of cortisol, adrenocorticotropic hormone, prolactin and beta-endorphin concentrations. Neurosci Lett 2002; 324: 414.
  • 20
    Kho HG, Kloppenborg PW, van Egmond J. Effects of acupuncture and transcutaneous stimulation analgesia on plasma hormone levels during and after major abdominal surgery. Eur J Anaesthesiol 1993; 10: 197208.
  • 21
    Schmidt C, Kraft K. Beta-endorphin and catecholamine concentrations during chronic and acute stress in intensive care patients. Eur J Med Res 1996; 1: 52832.
  • 22
    Legakis I, Saramantis A, Voros D, Chalevelakis G, Tolis G. Dissociation of ACTH, beta-endorphin and cortisol in graded sepsis. Horm Metab Res 1998; 30: 5704.
  • 23
    Jungkunz G, Engel RR, King UG, Kuss HJ. Endogenous opiates increase pain tolerance after stress in humans. Psychiatry Res 1983; 8: 138.
  • 24
    Henry JL. Circulating opioids: possible physiological roles in central nervous function. Neurosci Biobehav Rev 1982; 6: 22945.
  • 25
    Bodnar RJ, Kelly DD, Brutus M, Glusman M. Stress-induced analgesia: neural and hormonal determinants. Neurosci Biobehav Rev 1980; 4: 87100.
  • 26
    Kelly DD. The role of endorphins in stress-induced analgesia. Ann N Y Acad Sci 1982; 398: 26071.
  • 27
    Molina PE. Opiate modulation of hemodynamic, hormonal, and cytokine responses to hemorrhage. Shock 2001; 15: 4718.
  • 28
    Fukuda T, Nishimoto C, Miyabe M, Toyooka H. The residual effects of hemorrhagic shock on pain reaction and c-fos expression in rats. Anesth Analg 2001; 93: 4249.
  • 29
    Wiedenmayer CP, Barr GA. Mu opioid receptors in the ventrolateral periaqueductal gray mediate stress-induced analgesia but not immobility in rat pups. Behav Neurosci 2000; 114: 12536.
  • 30
    LaBuda CJ, Sora I, Uhl GR, Fuchs PN. Stress-induced analgesia in μ-opioid receptor knockout mice reveals normal function of the δ-opioid receptor system. Brain Res 2000; 869: 15.
  • 31
    Willer JC, Dehen H, Cambier J. Stress-induced analgesia in humans: endogenous opioids and naloxone-reversible depression of pain reflexes. Science 1981; 212: 68991.
  • 32
    Willer JC, Albe-Fessard D. Electrophysiological evidence for a release of endogenous opiates in stress-induced ‘analgesia’ in man. Brain Res 1980; 198: 41926.
  • 33
    Willer JC, Le Bars D, De Broucker T. Diffuse noxious inhibitory controls in man: involvement of an opioidergic link. Eur J Pharmacol 1990; 182: 34755.
  • 34
    Negri M, Lomanto D, Tonnarini G et al. Plasma opioid levels during extracorporeal gallstone lithotripsy. Am J Gastroenterol 1993; 88: 10936.
  • 35
    Han JS. Acupuncture and endorphins. Neurosci Lett 2004; 361: 25861.
  • 36
    Chen XH, Han JS. All three types of opioid receptors in the spinal cord are important for 2/15 Hz electroacupuncture analgesia. Eur J Pharmacol 1992; 211: 203210.
  • 37
    Hamza MA, White PF, Craig WF et al. Percutaneous electrical nerve stimulation: a novel analgesic therapy for diabetic neuropathic pain. Diabetes Care 2000; 23: 36570.
  • 38
    Holaday JW. Opiate antagonists in shock and trauma. Am J Emerg Med 1984; 2: 812.
  • 39
    Faden AI, Holaday JW. Opiate antagonists: a role in the treatment of hypovolemic shock. Science 1979; 205: 3178.
  • 40
    Molina PE. Opiate modulation of hemodynamic, hormonal and cytokine responses to hemorrhage. Shock 2001; 15: 4718.
  • 41
    Gurll NJ, Reynolds DG, Holaday JW. Evidence for a role of endorphins in the cardiovascular pathophysiology of primate shock. Crit Care Med 1988; 16: 52130.
  • 42
    Curtis MT, Lefer AM. Protective actions of naloxone in hemorrhagic shock. Am J Physiol 1980; 239: H41621.
  • 43
    Salerno TA, Milne B, Jhamandas KH. Hemodynamic effects of naloxone in hemorrhagic shock in pigs. Surg Gynecol Obstet 1981; 152: 7736.
  • 44
    van den Berg MH, van Giersbergen PL, Cox-van Put J, de Jong W. Endogenous opioid peptides and blood pressure regulation during controlled, stepwise hemorrhagic hypotension. Circ Shock 1991; 35: 1028.
  • 45
    de Jong W, Sandor P, Cox-van Put J, van den Berg MH, van Giersbergen PL. Beta-endorphin and central control of arterial blood pressure during challenge of circulatory homeostasis. Resuscitation 1989; 18: 17382.
  • 46
    Daly T, Beamer KC, Vargish T, Wilson A. Correlation of plasma beta-endorphin levels with mean arterial pressure and cardiac output in hypovolemic shock. Crit Care Med 1987; 15: 7235.
  • 47
    Boeuf B, Poirier V, Gauvin F et al. Naloxone for shock. Cochrane Database Syst Rev 2003, Issue 4, CD004443.
  • 48
    Fecho K, Maslonek KA, Dykstra LA, Lysle DT. Evidence for sympathetic and adrenal involvement in the immunomodulatory effects of acute morphine treatment in rats. J Pharmacol Exp Ther 1996; 277: 63345.
  • 49
    Wittert G, Hope P, Pyle D. Tissue distribution of opioid receptor gene expression in the rat. Biochem Biophys Res Commun 1996; 218: 87781.
  • 50
    Hedner T, Cassuto J. Opioids and opioid receptors in peripheral tissues. Scand J Gastroenterol Suppl 1987; 130: 2746.
  • 51
    McIntosh TK, Palter M, Grasberger R, Vezina R, Yeston NS, Egdahl RH. Effect of an opiate antagonist (naloxone) and an agonist/antagonist (nalbuphine) in primate hemorrhagic shock: relationship to catecholamine release. Circ Shock 1985; 17: 31325.
  • 52
    Allgood SC, Gurll NJ, Reynolds DG. Naloxone requires circulating catecholamines to attenuate the cardiovascular suppression of endotoxic shock. J Surg Res 1988; 44: 7381.
  • 53
    Schoffelmeer AN, Rice KC, Jacobson AE et al. Mu-, delta- and kappa-opioid receptor-mediated inhibition of neurotransmitter release and adenylate cyclase activity in rat brain slices: studies with fentanyl isothiocyanate. Eur J Pharmacol 1988; 154: 16978.
  • 54
    Simmons ML, Wagner JJ, Caudle RM, Chavkin C. Endogenous opioid regulation of norepinephrine release in guinea pig hippocampus. Neurosci Lett 1992; 141: 848.
  • 55
    Feuerstein G. The opioid system and central cardiovascular control: analysis of controversies. Peptides 1985; 6 (Suppl. 2): 516.
  • 56
    Thureson-Klein A. Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals. Neuroscience 1983; 10: 24559.
  • 57
    Younes A, Pepe S, Barron BA, Spurgeon HA, Lakatta EG, Caffrey JL. Cardiac synthesis, processing, and coronary release of enkephalin-related peptides. Am J Physiol Heart Circ Physiol 2000; 279: H198998.
  • 58
    Ventura C, Guarnieri C, Vaona I, Campana G, Pintus G, Spampinato S. Dynorphin gene expression and release in the myocardial cell. J Biol Chem 1994; 269: 53846.
  • 59
    Pepe S, van den Brink OWV, Lakatta EG, Xiao R. Cross-talk of opioid peptide receptor and β-adrenergic receptor signalling in the heart. Cardiovascular Res 2004; 63: 41422.
  • 60
    Musha T, Satoh E, Koyanagawa H, Kimura T, Satoh S. Effects of opioid agonists on sympathetic and parasympathetic transmission to the dog heart. J Pharmacol Exp Ther 1989; 250: 108791.
  • 61
    Kiritsy-Roy JA, Marson L, Van Loon GR. Sympathoadrenal, cardiovascular and blood gas responses to highly selective mu and delta opioid peptides. J Pharmacol Exp Ther 1989; 251: 1096103.
  • 62
    Mastrianni JA, Palkovits M, Kunos G. Activation of brainstem endorphinergic neurons causes cardiovascular depression and facilitates baroreflex bradycardia. Neuroscience 1989; 33: 55966.
  • 63
    Pfeiffer A, Feuerstein G, Zerbe RL, Faden AI, Kopin IJ. Mu-receptors mediate opioid cardiovascular effects at anterior hypothalamic sites through sympatho-adrenomedullary and parasympathetic pathways. Endocrinology 1983; 113: 92938.
  • 64
    Irnaten M, Aicher SA, Wang J et al. Mu-opioid receptors are located postsynaptically and endomorphin-1 inhibits voltage-gated calcium currents in premotor cardiac parasympathetic neurons in the rat nucleus ambiguus. Neuroscience 2003; 116: 57382.
  • 65
    Semenkovich CF, Jaffe AS. Adverse effects due to morphine sulfate. Challenge to previous clinical doctrine. Am J Med 1985; 79: 32530.
  • 66
    Hoffman WE, McDonald T, Berkowitz R. Simultaneous increases in respiration and sympathetic function during opiate detoxification. J Neurosurg Anesthesiol 1998; 10: 20510.
  • 67
    Michaloudis D, Kochiadakis G, Georgopoulou G et al. The influence of premedication on heart rate variability. Anaesthesia 1998; 53: 44653.
  • 68
    Latson TW, McCarroll SM, Mirhej MA, Hyndman VA, Whitten CW, Lipton JM. Effects of three anesthetic induction techniques on heart rate variability. J Clin Anesth 1992; 53: 26576.
  • 69
    Komatsu T, Kimura T, Sanchala V, Shibutani K, Shimada Y. Effects of fentanyl-diazepam-pancuronium anesthesia on heart rate variability: a spectral analysis. J Cardiothorac Vasc Anesth 1992; 53: 4448.
  • 70
    Zickmann B, Hofmann HC, Pottkamper C, Knothe C, Boldt J, Hempelmann G. Changes in heart rate variability during induction of anesthesia with fentanyl and midazolam. J Cardiothorac Vasc Anesth 1996; 10: 60913.
  • 71
    Hierholzer C, Kalff JC, Omert L et al. Interleukin-6 production in hemorrhagic shock is accompanied by neutrophil recruitment and lung injury. Am J Physiol 1998; 275 (Pt 1): L61121.
  • 72
    Ayala A, Wang P, Ba ZF, Perrin MM, Ertel W, Chaudry IH. Differential alterations in plasma IL-6 and TNF levels following trauma and hemorrhage. Am J Physiol 1991; 260: R16771.
  • 73
    Song Y, Lihua A, Raeburn CD et al. A low level of TNF-α mediates hemorrhage-induced acute lung injury via a p55 TNF receptor. Am J Physiol Lung Cell Mol Phsyiol 2001; 281: 67784.
  • 74
    Meng ZH, Dyer K, Billiar TR, Tweardy DJ. Essential role for IL-6 in postresuscitation inflammation in hemorrhagic shock. Am J Physiol Cell Physiol 2001; 280: 34351.
  • 75
    Colletti LM, Cortis A, Lukacs N, Kunkel SL, Green M, Strieter RM. Tumor necrosis factor up-regulates intercellular adhesion molecule 1, which is important in the neutrophil-dependent lung and liver injury associated with hepatic ischemia and reperfusion in the rat. Shock 1998; 10: 18291.
  • 76
    Chaudry IH, Ayala A. Immunological Aspects of Hemorrhage Austin. Medical Intelligence Unit, RG Landes Company, 1992.
  • 77
    Stephan RN, Ayala A, Chaudry IH. Monocyte and lymphocyte responses following trauma. In: SchlagG, RedlH, eds. Pathophysiology of Shock, Sepsis and Organ Failure. Berlin: Springer-Verlag, 1993; 13144.
  • 78
    Ertel W, Morrison MH, Ayala A, Chaudry IH. Hypoxemia in the absence of blood loss or significant hypotension causes inflammatory cytokine release. Am J Physiol 1995; 269 (Pt 2): R1606.
  • 79
    Altman A, Coggeshall T. Mustelin. Molecular events mediating T cell activation. Adv Immunol 1990; 48: 227360.
  • 80
    Napolitano LM, Campbell C. Polymicrobial sepsis following trauma inhibits interleukin-10 secretion and lymphocyte proliferation. J Trauma 1995; 39: 10410.
  • 81
    Wichmann MW, Ayala A, Chaudry IH. Severe depression of host immune functions following closed-bone fracture, soft-tissue trauma, and hemorrhagic shock. Crit Care Med 1998; 26: 13728.
  • 82
    Angele MK, Knoferl MW, Schwacha MG et al. Hemorrhage decreases macrophage inflammatory protein 2 and interleukin-6 release: a possible mechanism for increased wound infection. Ann Surg 1999; 229: 65160; discussion: 6601.
  • 83
    Xu YX, Ayala A, Chaudry IH. Prolonged immunodepression after trauma and hemorrhagic shock. J Trauma 1998; 44: 33541.
  • 84
    Zellweger R, Ayala A, DeMaso CM, Chaudry IH. Trauma-hemorrhage causes prolonged depression in cellular immunity. Shock 1995; 4: 14953.
  • 85
    Haupt W, Riese J, Mehler C, Weber K, Zowe M, Hohenberger W. Monocyte function before and after surgical trauma. Dig Surg 1998; 15: 1024.
  • 86
    Fuchs D, Gruber A, Wachter H, Faist E. Activated cell-mediated immunity and immunodeficiency in trauma and sepsis. In: FaistE, BaueAE, SchildbergFW, eds. The Immune Consequences of Trauma, Shock and Sepsis Mechanisms and Therapeutic Approaches. Lengerich: Pabst Science Publishers, 1996; 2359.
  • 87
    Ertel W, Singh G, Morrison MH, Ayala A, Chaudry IH. Chemically induced hypotension increases PGE2 release and depresses macrophage antigen presentation. Am J Physiol 1993; 264: R65560.
  • 88
    Abraham E. T- and B-cell function and their roles in resistance to infection. New Horizons 1993; 1: 2836.
  • 89
    Faist E, Baue AE, Dittmer H. Multiple organ failure in poly-trauma patients. J Trauma 1983; 23: 77587.
  • 90
    Roumen RM, Hendriks T, van der Ven-Jongekrijg J et al. Cytokine patterns in patients after major surgery, hemorrhagic shock, and severe blunt trauma. Ann Surg 1993; 6: 76976.
  • 91
    Angele MK, Faist E. Clinical review: immunodepression in the surgical patient and increased susceptibility to infection. Crit Care 2002; 6: 298305.
  • 92
    Murphy TJ, Paterson HM, Mannick JA, Lederer JA. Injury, sepsis, and the regulation of Toll-like receptor responses. J Leukoc Biol 2004; 75: 4007.
  • 93
    Molina PE, Bagby GJ, Stahls P. Hemorrhage alters neuroendocrine, hemodynamic and cytokine responses to LPS. Shock 2001; 16: 45965.
  • 94
    Le Tulzo Y, Shenkar R, Kaneko D et al. Hemorrhage increases cytokine expression in lung mononuclear cells in mice. Involvement of catecholamines in nuclear factor-κB regulation and cytokine expression. J Clin Invest 1997; 99: 151624.
  • 95
    Molina PE, Abumrad NN. Central sympathetic modulation of tissue cytokine response to hemorrhage. J Neuroimmunomodul 1999; 6: 193200.
  • 96
    Molina PE. Noradrenergic inhibition of stress-induced TNF upregulation in hemorrhagic shock. J Neuroimmunomodul 2001; 9: 12533.
  • 97
    Eisenstein TK, Hilburger ME. Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J Neuroimmunol 1998; 83: 3644.
  • 98
    McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ. Opioids, opioid receptors, and the immune response. Drug Alcohol Depend 2001; 62: 11123.
  • 99
    Sacerdote P, Limiroli E, Gaspani L. Experimental evidence for immunomodulatory effects of opioids. Adv Exp Med Biol 2003; 521: 10616.
  • 100
    Carr DJ, DeCosta BR, Kim CH et al. Opioid receptors on cells of the immune system: evidence for delta- and kappa-classes. J Endocrinol 1989; 122: 1618.
  • 101
    Chuang TK, Killam KFJ, Chuang LF et al. Mu opioid receptor gene expression in immune cells. Biochem Biophys Res Commun 1995; 216: 92230.
  • 102
    Carr DJ, Rogers TJ, Weber RJ. The relevance of opioids and opioid receptors on immunocompetence and immune homeostasis. Proc Soc Exp Biol Med 1996; 213: 24857.
  • 103
    Carr D, Gebhart B, Paul D. Alpha adrenergic and mu-2 opioid receptors are involved in morphine-induced suppression of splenocyte natural killer activity. J Pharmacol Exp Ther 1993; 264: 117986.
  • 104
    Welters ID, Menzebach A, Goumon Y et al. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and mu(3) opiate receptor-dependent mechanism. J Neuroimmunol 2000; 111: 13945.
  • 105
    Grimm MC, Ben-Baruch A, Taub DD, Howard OM, Wang JM, Oppenheim JJ. Opiate inhibition of chemokine-induced chemotaxis. Ann N Y Acad Sci 1998; 840: 920.
  • 106
    Menzebach A, Hirsch J, Nost R, Mogk M, Hempelmann G, Welters ID. Morphine inhibits complement receptor expression, phagocytosis and oxidative burst by a nitric oxide dependent mechanism. Anasthesiol Intensivmed Notfallmed Schmerzther 2004; 39: 20411.
  • 107
    Bertolini G, Minelli C, Latronico N et al. Gruppo Italiano per la Valutazione degli Interventi in Terapia Intensiva. The use of analgesic drugs in postoperative patients: the neglected problem of pain control in intensive care units. An observational, prospective, multicenter study in 128 Italian intensive care units. Eur J Clin Pharmacol 2002; 58: 737.
  • 108
    Guldbrand P, Berggren L, Brattebo G, Malstam J, Ronholm E, Winso O, Scandinavian Critical Care Trials Group. Survey of routines for sedation of patients on controlled ventilation in Nordic intensive care units. Acta Anaesthesiol Scand 2004; 48: 94450.
  • 109
    Vallejo R, de Leon-Casasola O, Benyamin R. Opioid therapy and immunosuppression: a review. Am J Ther 2004; 11: 35465.
  • 110
    Carr DJJ, Serou M. Exogenous and endogenous opioids as biological response modifiers. Immunopharmacology 1995; 31: 5971.
  • 111
    Sueoka N, Sueoka E, Okabe S, Fujiki H. Anti-cancer effects of morphine through inhibition of tumour necrosis factor-alpha release and mRNA expression. Carcinogenesis 1996; 17: 233741.
  • 112
    Sacerdote P, Bianchi M, Gaspani L et al. The effects of tramadol and morphine on immune responses and pain after surgery in cancer patients. Anesth Analg 2000; 90: 14114.
  • 113
    Brand JM, Frohn C, Luhm J, Kirchner H, Schmucker P. Early alterations in the number of circulating lymphocyte subpopulations and enhanced proinflammatory immune response during opioid-based general anesthesia. Shock 2003; 20: 2137.
  • 114
    Akural EI, Salomaki TE, Bloigu AH et al. The effects of pre-emptive epidural sufentanil on human immune function. Acta Anaesthesiol Scand 2004; 48: 7505.
  • 115
    Yeager MP, Colacchio TA, Yu CT et al. Morphine inhibits spontaneous and cytokine-enhanced natural killer cell cytotoxicity in volunteers. Anesthesiology 1995; 83: 5008.
  • 116
    Yeager M, Procopio M, DeLeo J, Arruda J, Hildebrandt L, Howell A. Intravenous fentanyl increases natural killer cell cytotoxicity and circulating CD(+)16 lymphocytes in humans. Anesth Analg 2002; 94: 949.
  • 117
    Thomas V, Schenk M, Voigt K, Tohtz S, Putzier M, Kox WJ. Postoperative epidural anesthesia preserves lymphocyte, but not monocyte, immune function after major spine surgery. Anesth Analg 2004; 98: 108692.
  • 118
    Charghi R, Backman S, Christou N, Rouah F, Schricker T. Patient controlled i.v. analgesia is an acceptable pain management strategy in morbidly obese patients undergoing gastric bypass surgery. A retrospective comparison with epidural analgesia. Can J Anaesth 2003; 50: 6728.
  • 119
    Walder B, Tramer MR. Analgesia and sedation in critically ill patients. Swiss Med Wkly 2004; 134: 33346.
  • 120
    Mastronardi P, Cafiero T. Rational use of opioids. Minerva Anestesiol 2001; 67: 3327.
  • 121
    Liu LL, Gropper MA. Postoperative analgesia and sedation in the adult intensive care unit: a guide to drug selection. Drugs 2003; 63: 75567.
  • 122
    Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med 1996; 24: 158090.
  • 123
    Schroeder S, Wichers M, Klingmuller D et al. The hypothalamic-pituitary-adrenal axis of patients with severe sepsis: altered response to corticotropin-releasing hormone. Crit Care Med 2001; 29: 3106.
  • 124
    Reincke M, Allolio B, Wurth G, Winkelmann W. The hypothalamic-pituitary-adrenal axis in critical illness: response to dexamethasone and corticotropin-releasing hormone. J Clin Endocrinol Metab 1993; 77: 1516.
  • 125
    Van den Berghe G. Endocrine evaluation of patients with critical illness. Endocrinol Metab Clin North Am 2003; 32: 385410.
  • 126
    Van den Berghe G. Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol 2000; 143: 113.
  • 127
    Wolfe RR. Substrate utilization/insulin resistance in sepsis/trauma. Baillieres Clin Endocrinol Metab 1997; 11: 64557.
  • 128
    Molina PE, Ajmal M, Abumrad NN. Energy metabolism and fuel mobilization: from the perioperative period to recovery. Shock 1998; 9: 2418.
  • 129
    Robinson LE, van Soeren MH. Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control. AACN Clin Issues 2004; 15: 4562.
  • 130
    Hasselgren PO. Catabolic response to stress and injury: implications for regulation. World J Surg 2000; 24: 14529.
  • 131
    Molina PE, Hashiguchi Y, Ajmal M, Mazza M, Abumrad NN. Differential hemodynamic, metabolic and hormonal effects of morphine and morphine-6-glucuronide. Brain Res 1994; 664: 12632.
  • 132
    Feldberg W, Gupta KP. Morphine hyperglycaemia. J Physiol 1974; 238: 487502.
  • 133
    Feldman M, Kiser RS, Unger RH, Li CH. Beta-endorphin and the endocrine pancreas. Studies in healthy and diabetic human beings. N Engl J Med 1983; 308: 34953.
  • 134
    Li Y, Eitan S, Wu J et al. Morphine induces desensitization of insulin receptor signaling. Mol Cell Biol 2003; 23: 625566.
  • 135
    Van den Berghe G, Wouters P, Weekers F et al. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001; 345: 135967.
  • 136
    Van den Berghe G, Wouters PJ, Bouillon R et al. Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control. Crit Care Med 2003; 31: 35966.
  • 137
    Schug SA, Zech D, Grond S. Adverse effects of systemic opioid analgesics. Drug Saf 1992; 7: 20013.
  • 138
    Guillou N, Tanguy M, Seguin P, Branger B, Campion JP, Malledant Y. The effects of small-dose ketamine on morphine consumption in surgical intensive care unit patients after major abdominal surgery. Anesth Analg 2003; 97: 8437.
  • 139
    Adriaenssens G, Vermeyen KM, Hoffmann VL, Mertens E, Adriaensen HF. Postoperative analgesia with i.v. patient-controlled morphine: effect of adding ketamine. Br J Anaesth 1999; 83: 3936.
  • 140
    Weinbroum AA. A single small dose of postoperative ketamine provides rapid and sustained improvement in morphine analgesia in the presence of morphine-resistant pain. Anesth Analg 2003; 96: 78995.
  • 141
    Unlugenc H, Ozalevli M, Guler T, Isik G. Postoperative pain management with intravenous patient-controlled morphine: comparison of the effect of adding magnesium or ketamine. Eur J Anaesthesiol 2003; 20: 41621.
  • 142
    Reeves M, Lindholm DE, Myles PS, Fletcher H, Hunt JO. Adding ketamine to morphine for patient-controlled analgesia after major abdominal surgery: a double-blinded, randomized controlled trial. Anesth Analg 2001; 93: 11620.
  • 143
    De Kock M, Lavand'homme P, Waterloos H. ‘Balanced analgesia’ in the perioperative period: is there a place for ketamine? Pain 2001; 92: 37380.
  • 144
    Javery KB, Ussery TW, Steger HG, Colclough GW. Comparison of morphine and morphine with ketamine for postoperative analgesia. Can J Anaesth 1996; 43: 2125.
  • 145
    Wong CS, Liaw WJ, Tung CS, Su YF, Ho ST. Ketamine potentiates analgesic effect of morphine in postoperative epidural pain control. Reg Anesth 1996; 21: 53441.
  • 146
    Molina PE, Zambell KL, Zhang P, Vande Stouwe C, Carnal J. Hemodynamic and immune consequences of opiate analgesia after trauma/hemorrhage. Shock 2004; 21: 52634.
  • 147
    Heller A, Heller S, Blecken S, Urbaschek R, Koch T. Effects of intravenous anesthetics on bacterial elimination in human blood in vitro. Acta Anaesthesiol Scand 1998; 42: 51826.
  • 148
    Chang Y, Chen TL, Sheu JR, Chen RM. Suppressive effects of ketamine on macrophage functions. Toxicol Appl Pharmacol 2005; 204: 2735.
  • 149
    Larsen B, Hoff G, Wilhelm W, Buchinger H, Wanner GA, Bauer M. Effect of intravenous anesthetics on spontaneous and endotoxin-stimulated cytokine response in cultured human whole blood. Anesthesiology 1998; 89: 121827.
  • 150
    Brower V. New paths to pain relief. Nat Biotechnol 2000; 18: 38791.
  • 151
    Binder W, Machelska H, Mousa S et al. Analgesic and anti-inflammatory effects of two novel kappa opioid peptides. Anesthesiology 2001; 94: 103444.
  • 152
    Feuerstein G, Siren AL. Effect of naloxone and morphine on survival of conscious rats after hemorrhage. Circ Shock 1986; 19: 293300.
  • 153
    Minnich DJ, Moldawer LL. Anti-cytokine and anti-inflammatory therapies for the treatment of severe sepsis: progress and pitfalls. Proc Nutr Soc 2004; 63: 43741.
  • 154
    Molina PE, Abumrad NN. Metabolic effects of opioid peptides and opiate alkaloids. Adv Neuroimmunol 1994; 4: 10516.