• 1
    Uldry M, Thorens B. The SLC2 family or facilitated hexose and polyol transporters. Pflugers Arch 2004; 447: 4809.
  • 2
    Wright EM, Turk E. The sodium glucose cotransport family SLC5. Pflugers Arch 2004; 447: 5108.
  • 3
    Diez-Sampedro A, Hirayama BA, Oswald C et al. A glucose sensor hiding in a family of transporters. PNAS 2002; 100: 117538.
  • 4
    Turk E, Wright EM. Membrane topological motifs in the SGLT cotransporter family. J Membr Biol 1997; 159: 120.
  • 5
    Turk E, Kim O, LeCoutre J et al. Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters. J Biol Chem 2000; 275.33: 257116.
  • 6
    Turk E, Gasymov O, Lanza S, Horwitz J, Wright EM. A reinvestigation of the secondary structure of functionally active Vibrio sodium/galactose cotransporter vSGLT. Biochemistry 2006; 45: 14709.
  • 7
    Panayotova-Heiermann M, Leung DW, Hirayama BA, Wright EM. Purification and functional reconstitution of a truncated human Na+/glucose cotransporter (SGLT1) expressed in E. coli. FEBS Lett 1999; 459: 386290.
  • 8
    Wright EM, Loo DDF, Hirayama BA, Turk E. Surprising Versatility of Na+/glucose Cotransporters (SLC5). Physiology 2004; 19: 3706.
  • 9
    Taroni C, Jones S, Thornton JM. Analysis and prediction of carbohydrate binding sites. Protein Eng 2000; 13: 8998.
  • 10
    Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science 2003; 301: 6105.
  • 11
    Quiocho FA. Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. Annu Rev Biochem 1986; 55: 287315.
  • 12
    Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cDNA sequencing of the Na+/glucose cotransporter. Nature 1987; 330: 37981.
  • 13
    Umbach JA, Coady MJ, Wright EM. The intestinal Na+/glucose cotransporter expressed in Xenopus oocytes is electrogenic. Biophys J 1990; 57: 121724.
  • 14
    Parent L, Supplisson S, Loo DF, Wright EM. Electrogenic properties of the cloned Na+/glucose cotransporter. Part I. Voltage-clamp studies. J Membr Biol 1992; 125: 4962.
  • 15
    Loo DDF, Hazama A, Supplisson S, Turk E, Wright EM. Relaxation kinetics of the Na+/glucose cotransporter. Proc Nat Acad Sci (USA) 1993; 90: 576771.
  • 16
    Zampighi GA, Kreman M, Boorer KJ et al. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J Membr Biol 1995; 148: 6578.
  • 17
    Loo DDF, Hirayama BA, Gallardo EM, Lam JT, Turk E, Wright EM. Conformational changes couple Na+ and glucose transport. Proc Nat Acad Sci (USA) 1998; 95: 778994.
  • 18
    Eskandari S, Wright EM, Loo DDF. Kinetics of the reverse mode of the Na+/glucose cotransporter: a test of the 6-state kinetic model for SGLT1. J Membr Biol 2005; 204: 2332.
  • 19
    Loo DDF, Hirayama BA, Cha A, Bezanilla F, Wright EM. Perturbation analysis of the voltage-and Na+-induced conformational changes of the Na+/glucose cotransporter. J Gen Physiol 2005; 125: 1336.
  • 20
    Veenstra M, Lanza S, Hirayama BA, Turk E, Wright EM. Local conformational changes in the vibro Na+/galactose cotransporter. Biochemistry 2004; 43: 36207.
  • 21
    Quick M, Wright EM. Employing Escherichia coli to functionally express, purify, and characterize a human transporter. Proc Nat Acad Sci (USA) 2002; 99: 8597601.
  • 22
    Quick M, Tomasevic J, Wright EM. Functional asymmetry of the human Na+/glucose transporter (hSGLTI1) in bacterial membrane vesicles. Biochemistry 2003; 42: 914752.
  • 23
    Wright EM, Loo DDF, Hirayama BA, Turk E. Chapter 64. Sugar Absorption. In: JohnsonLR et al. Physiology of the Gastrointestinal Tract. 4th edn. San Diego: Elsevier/Academic Press, 2006.
  • 24
    Eskandari S, Wright EM, Kreman M, Starace DM, Zampighi GA. Structural analysis of cloned membrane proteins by freeze-fracture electron micoscopy. Proc Nat Acad Sci (USA) 1998; 95: 1123540.
  • 25
    Mackenzie B, Loo DDF, Wright EM. Relations between Na+/glucose cotransporter (SGLT1) currents and fluxes. J Membr Biol 1998; 162: 1016.
  • 26
    Parent L, Supplisson S, Loo DF, Wright EM. Electrogenic properties of the cloned Na+/glucose cotransporter: Part II. A transport model under nonrapid equilibrium conditions. J Membr Biol 1992; 125: 6379.
  • 27
    Meinild AK, Hirayama BA, Wright EM, Loo DDF. Fluorescence studies of ligand-induced conformational changes of the Na+/glucose cotransporter. Biochemistry 2002; 41: 12508.
  • 28
    Loo DDF, Hirayama BA, Karakossian MH, Meinmild A-K, Wright EM. Conformational dynamics of hSGLT1 during Na/glucose cotransport. J Gen Phys 2006; (in press).
  • 29
    Diez-Sampedro A, Wright EM, Hirayama BA. Residue 457 controls sugar binding and transport in the Na+/glucose cotransporter. J Biol Chem 2001; 276: 4918894.
  • 30
    Diez-Sampedro A, Lostao MP, Wright EM, Hirayama BA. Glycoside binding and translocation in Na+-dependent glucose cotransporters: comparison of SGLT1 and SGLT3. J Membr Biol 2000; 176: 1117.
  • 31
    Hirayama BA, Diez-Sampedro A, Wright EM. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/C1-/GABA (hGAT1) cotransporters. Br J Pharmacol 2001; 134.3: 48495.
  • 32
    Melin K, Meeuwisse GW. Glucose-galactose malabsorption. A genetic study. Acta Paediatr Scand 1969; 188: 19.
  • 33
    Schneider AJ, Kinter WB, Stirling CE. Glucose-galactose malabsorption. Report of a case with autoradiographic studies of a mucosal biopsy. N Engl J Med 1966; 274: 30512.
  • 34
    Elsas LJ, Rosenberg LE. Familial renal glycosuria: a genetic reappraisal of hexose transport by kidney and intestine. J Clin Invest 1969; 48: 184554.
  • 35
    Oemar BS, Byrd J, Brodehl J. Complete absence of tubular glucose reabsorption: a new type of renal glucosuria (type 0). Clin Nephrol 1987; 27: 15660.
  • 36
    Scholl-Burgi S, Santer R, Ehrich JHH. Long-term outcome of renal glucosuria type 0: the original patient and his natural history. Nephrol Dial Transplant 2004; 19: 23946.
  • 37
    Wright EM, Martín MG, Turk E. Familial glucose-galactose malabsorption and hereditary renal glycosuria. In: ScriverCR, BeaudetAL, SlyWS, ValleD, eds. Metabolic Basis of Inherited Disease. 8th edn, Vol. III, Vol. no. 190. New York: McGraw Hill, 2001; 48914908.
  • 38
    Wright EM, Turk E, Martin MG. The molecular basis for glucose-galactose-malabsorption. Cell Biochem Biophys 2002; 36: 11521
  • 39
    Van den Heuvel LP, Assink K, Willemsen M, Monnens L. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet 2002; 111: 5447.
  • 40
    Calado J, Soto K, Clemente C. A novel compound heterozygous mutations in SLC5A2 are responsible for autosomal recessive renal glucosuria. Hum Genet 2004; 114: 3146.
  • 41
    Santer R, Kinner M, Lassen CL et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 2003; 14: 287382.
  • 42
    Francis J, Zhang J, Farhi A, Carey H, Geller DS. A novel SGLT2 mutation in a patient with atuosomal recessive renal glucosuria. Nephrol Dial Transplant 2004; 19: 28935.
  • 43
    Kleta R, Stuart C, Gill FA, Gahl WA. Renal glucosuria due to SGLT2 mutations. Mol Genet Metabol 2004; 82: 568.
  • 44
    Magen D, Sprecher E, Zelikovic I, Skorecki K. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int 2005; 67: 3441.
  • 45
    Hirschhorn N, Greenough III WB. Progress in oral rehydration therapy. Sci Am 1991; 264: 506.
  • 46
    Loo DDF, Wright EM, Zeuthen T. Water pumps. J Physiol 2001; 542: 5360.
  • 47
    Zeuthen T, Belhage B, Zeuthen E. Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution. J Physiol 2006; 570: 48599.
  • 48
    Charron FM, Blanchard MG, Lapointe JY. Intracellular hypertonicity is responsible for water flux associated with Na+/glucose cotransport. Biophys J 2006; 90: 354654.
  • 49
    Dyer J, Wood IS, Palejwala A, Ellis A, Shirazi-Beechey SP. Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol 2002; 282: G2418.
  • 50
    Asano N. Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 2003; 13: 93R104R.
  • 51
    Ueta K, Yoneda H, Oku A, Nishiyama S, Saito A, Arakawa K. Reduction of renal transport maximum for glucose by inhibition of Na(+)-glucose cotransporter suppresses blood glucose elevation in dogs. Biol Pharm Bull 2006; 29: 1148.
  • 52
    Hager K, Hazama A, Kwon HM, Loo DDF, Handler JS, Wright EM. Kinetics and Specificity of the Renal Na+/myo-Inositol Cotransporter Expressed in Xenopus Oocytes. J Membr Biol 1995; 143: 10313.
  • 53
    Coady M, Wallendorff B, Gagnon D, Lapointe JY. Indentification of a Novel Na+/myo-Inositol Cotransporter. J Biol Chem 2002; 277: 3521924.
  • 54
    Tazawa S, Yamato T, Fujikura H et al. SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-d-glucitol, and fructose. Life Sci 2005; 76: 103950.
  • 55
    Wright EM. Genetic disorder of membrane transport I. Glucose galactose malabsorption. Am J Physiol Gastrointest Liver Physiol 1998; 275: G87982.