• 1
    Barker DJP. Mothers, Babies and Disease in Later Life. London: BMJ Publishing, 1994.
  • 2
    Phillips DIW, Barker DJP, Hales CN et al. Thinness at birth and insulin resistance in later life. Diabetologia 1994; 37: 1504.
  • 3
    Jansson T, Powell TL. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? Placenta 2006; 27: S917.
  • 4
    Harding JE, Johnston BM. Nutrition and fetal growth. Reprod Fertil Dev 1995; 7: 53947.
  • 5
    Fowden AL. Endocrine regulation of fetal growth. Reprod Fertil Dev 1995; 7: 35163.
  • 6
    Fowden AL, Giussani DA, Forhead AJ. Endocrine and metabolic programming during intrauterine development. Early Hum Dev 2005; 81: 72334.
  • 7
    Rudolph AM. The fetal circulation and its response to stress. J Dev Physiol 1984; 6: 119.
  • 8
    Holemans K, Verhaeghe J, Dequeker J et al. Insulin sensitivity in adult female rats subjected to malnutrition during the perinatal period. J Soc Gynecol Invest 1996; 3: 717.
  • 9
    Garofano A, Czernikow P, Breant B. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia 1998; 41: 111420.
  • 10
    Bertin E, Gangnerau MN, Bellon G et al. Development of beta-cell mass in fetuses of rats deprived of protein and/or energy in the last trimester of pregnancy. Am J Physiol Regul Integr Comp Physiol 2002; 283: R62330.
  • 11
    Blondeau B, Gerafano A, Czernikow P et al. Age-dependant inability of the endocrine pancreas to adapt to pregnancy: a long-term consequence of perinatal malnutrition in the rat. Endocrinology 1999; 140: 420813.
  • 12
    Garofano A, Czernikow P, Breant B. In utero undernutrition impairs rat beta-cell development. Diabetologia 1997; 40: 12314.
  • 13
    Vickers MH, Brier BH, Cutfield WS et al. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification of hypercaloric diet nutrition. Am J Physiol Endocrinol Metab 2000; 279: E837.
  • 14
    Desai M, Crowther NJ, Lucas A et al. Organ selective growth in the offspring of protein restricted mothers. Br J Nutr 1996; 76: 591603.
  • 15
    Fernandez-Twinn DS, Wayman A, Ekizoglou S et al. Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21-mo-old female rat offspring. Am J Physiol Regul Integr Comp Physiol 2005; 288: R36873.
  • 16
    Hales CN, Desai M, Ozanne SE et al. Fishing in the stream of diabetes: from measuring insulin to the control of fetal organogenesis. Biochem Soc Trans 1996; 24: 34150.
  • 17
    Ozanne SE, Wang CL, Petry CJ et al. Ketosis resistance in the male offspring of protein-malnourished rat dams. Metabolism 1998; 47: 14504.
  • 18
    Shepherd PR, Crowther NJ, Desai M et al. Altered adipocyte properties in the offspring of protein malnourished rats. Br J Nutr 1997; 78: 1219.
  • 19
    Petry CJ, Dorling MW, Pawlak DB et al. Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res 2001, 2: 13943.
  • 20
    Ozanne SE, Lewis R, Jennings BJ et al. Early programming of weight gain in mice prevents the induction of obesity by a highly palatable diet. Clin Sci 2004; 106: 1415.
  • 21
    Forsen T, Eriksson J, Tuomilehto J et al. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000; 133: 17682.
  • 22
    Ozanne SE, Hales CN. Lifespan: catch-up growth and obesity in male mice. Nature 2004; 427: 4112.
  • 23
    Snoeck A, Remacle C, Reusens B et al. Effects of a low protein diet during pregnancy in the fetal rat endocrine pancreas. Biol Neonate 1990; 57: 10718.
  • 24
    Boujendar S, Reusens B, Merezak S et al. Taurine supplementation to a low protein diet during fetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia 2002; 45: 85666.
  • 25
    Arantes VC, Teixeira VPA, Reis MAB et al. Expression of PDX-1 is reduced in pancreatic islets from pups of rat dams fed a low protein diet during gestation and lactation. J Nutr 2002; 132: 30305.
  • 26
    Iype T, Francis J, Garmey JC et al. Mechanism of insulin gene regulation by the pancreatic transcription factor Pdx-1. J Biol Chem 2005; 280: 16798807.
  • 27
    Petrik J, Reusens B, Arany E et al. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat, and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 1999; 140: 486173.
  • 28
    Petrik J, Arany E, McDonald TJ et al. Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology 1998; 139: 29943004.
  • 29
    Merezak S, Reusens B, Renard A et al. Effect of maternal low-protein diet and taurine on the vulnerability of adult Wistar rat islets to cytokines. Diabetologia 2004; 47: 66975.
  • 30
    Boujendar S, Arany E, Hill D et al. Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularisation of the fetal endocrine pancreas. J Nutr 2003; 133: 28205.
  • 31
    Dahri S, Snoeck A, Reusens-Billen B et al. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes 1991; 40 (Suppl. 2): 11520.
  • 32
    Rasscheart J, Reusens B, Dahri S et al. Impaired activity of rat pancreatic islet mitochondrial glycerophosphate dehydrogenase in protein malnutrition. Endocrinology 1995; 136: 26314.
  • 33
    Burns SP, Desai M, Cohen RD et al. Gluconeogenesis, glucose handling and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest 1997; 100: 176874.
  • 34
    Ozanne SE, Smith GD, Tikerpae J et al. Altered regulation of hepatic glucose output in the male offspring of protein malnourished rat dams. Am J Physiol 1996; 270: E5564.
  • 35
    Desai M, Byrne CD, Zhang J et al. Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a prote in-restricted diet. Am J Physiol Gastrointest Liver Physiol 1997; 272: G108390.
  • 36
    Desai M, Byrne CD, Meeran K et al. Regulation of hepatic enzymes and insulin levels in offspring of rat dams fed a reduced-protein diet. Am J Physiol Gastrointest Liver Physiol 1997; 273: G899904.
  • 37
    Rees WD, Hay SM, Brown DS et al. Maternal protein deficiency causes hypermethylation of DNA in the livers of rat fetuses. J Nutr 2000; 130: 18216.
  • 38
    Caro JF, Triester S, Patel VK et al. Liver glucokinase decreased activity in patients with type II diabetes. Horm Metab Res 1995; 27: 1922.
  • 39
    Frank JW, Saslow SB, Camilleri M et al. Mechanisms of accelerated gastric emptying of liquids and hyperglycaemia in patients with type 2 diabetes mellitus. Gastroenterology 1995; 109: 75565.
  • 40
    El Khattabi I, Gregoire F, Remacle C et al. Isocaloric maternal low protein diet alters IGF-1, IGFBPs, and hepatocyte proliferation in the fetal rat. Am J Physiol Endocrinol Metab 2003; 285: E9911000.
  • 41
    Ozanne SE, Wang CL, Coleman N et al. Altered muscle insulin sensitivity in the male offspring of protein malnourished rats. Am J Physiol 1996; 271: E112834.
  • 42
    Ozanne SE, Olsen GS, Hansen LL et al. Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol 2003; 177: 23541.
  • 43
    Ozanne SE, Jensen CB, Tingey KJ et al. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 2005; 48: 54752.
  • 44
    Ozanne SE, Dorling MW, Wang CL et al. Depot-specific effects of early growth retardation on adipocyte insulin action. Horm Metab Res 2000; 32: 715.
  • 45
    Ozanne SE, Nave BT, Wang CL et al. Poor fetal nutrition causes long-term changes in expression of insulin signalling component in adipocytes. Am J Physiol 1997; 273: E4651.
  • 46
    Ozanne SE, Dorling MW, Wang CL et al. Impaired PI 3-kinase activation in adipocytes from early growth-restricted male rats. Am J Physiol Endocrinol Metab 2001; 280: E5349.
  • 47
    Ozanne SE, Jensen CB, Tingey KJ et al. Decreased protein expression of key insulin signalling molecules in adipose tissue from young men with a low birthweight – potential link to increased risk of diabetes. Diabetologia 2006; 46: 29939.
  • 48
    Wigglesworth JS. Fetal growth retardation. Animal model: uterine vessel ligation in the pregnant rat. Am J Pathol 1974; 77: 34750.
  • 49
    Ogata ES, Bussey M, Finley S. Altered gas exchange, limited glucose, branched chain amino acids, and hypoinsulinism retard fetal growth in the rat. Metabolism 1986; 35: 95077.
  • 50
    De Prins FA, Van Assche FA. Intrauterine growth retardation and development of endocrine pancreas in the experimental rat. Biol Neonate 1982; 41: 1621.
  • 51
    Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 2001; 50: 227986.
  • 52
    Styrud J, Eriksson UJ, Grill V et al. Experimental intrauterine growth retardation in the rat causes a reduction of pancreatic B-cell mass, which persists into adulthood. Biol Neonate 2005; 88: 1228.
  • 53
    Cha CJ, Gelardi NL, Oh W. Growth and cellular composition in rats with intrauterine growth retardation: effects of postnatal nutrition. Reproduction 1987; 117: 14638.
  • 54
    Lillioja S, Mott DM, Spraul M et al. Insulin resistance and insulin secretory function as precursors of non-insulin dependent diabetes mellitus. N Engl J Med 1993; 329: 198892.
  • 55
    Weyer C, Bogardus C, Mott DM et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104: 78794.
  • 56
    Stefan Y, Orci L, Malaisse-Lagae F et al. Quantitation of endocrine cell content in the pancreas on nondiabetic and diabetic humans. Diabetes 1982; 3: 694700.
  • 57
    Boloker J, Gertz SJ, Simmons RA. Gestational diabetes leads to the development of diabetes in adulthood in the rat. Diabetes 2002; 51: 1499506.
  • 58
    Vuguin P, Raab E, Liu B et al. Hepatic insulin resistance precedes the development of diabetes in a model of intrauterine growth retardation. Diabetes 2004; 53: 261722.
  • 59
    Lane RH, MacLennan NK, Hsu JL et al. Increased hepatic peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance. Endocrinology 2002; 143: 248690.
  • 60
    Lane RH, Kelley DE, Gruetzmacher EM et al. Uteroplacental insufficiency alters hepatic fatty acid-metabolizing enzymes in juvenile and adult rats. Am J Physiol Regul Integr Comp Physiol 2001; 280: R18390.
  • 61
    Selak MA, Storey BT, Peterside I et al. Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats. Am J Physiol Endocrinol Metab 2003; 285: E1307.
  • 62
    Lane RH, Maclennan NK, Daood MJ et al. IUGR alters postnatal rat skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a fiber specific manner. Pediatr Res 2003; 53: 9941000.
  • 63
    Lane RH, Kelley DE, Ritov V et al. Altered expression and function of mitochondrial beta-oxidation enzymes in juvenile intrauterine-growth-retarded rat skeletal muscle. Pediatr Res 2001; 50: 8390.
  • 64
    Seckl JR. Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 2004; 151: U4962.
  • 65
    Reinisch JM, Simon NG, Karow WG et al. Prenatal exposure to prednisone in humans and animals retards intrauterine growth. Science 1978; 202: 4368.
  • 66
    Nyirenda MJ, Lindsay RS, Kenyon CJ et al. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 1998; 10: 217481.
  • 67
    Beitins IZ, Bayard F, Ances IG et al. The metabolic clearance rate, blood production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term. Pediatr Res 1973; 7: 50919.
  • 68
    Benediktsson R, Calder AA, Edwards CR et al. Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol 1997; 46: 1616.
  • 69
    Lesage J, Del-Favero F, Leonhardt M et al. Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding behaviour disturbances in the aged rat. J Endocrinol 2004; 181: 2916.
  • 70
    Nyirenda MJ, Welberg LA, Seckl JR. Programming hyperglycaemia in the rat through prenatal exposure to glucocorticoids-fetal effect or maternal influence? J Endocrinol 2001; 170: 65360.
  • 71
    Cleasby ME, Kelly PA, Walker BR et al. Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology 2003; 144: 9991007.
  • 72
    Shen CN, Seckl JR, Slack JM et al. Glucocorticoids suppress beta cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J 2003; 375: 4150.
  • 73
    Nyirenda MJ, Dean S, Lyons V et al. Prenatal programming of hepatocyte nuclear factor 4alpha in the rat: a key mechanism in the ’foetal origins of hyperglycaemia'? Diabetologia 2006; 49: 141220.
  • 74
    Cleasby ME, Livingstone DE, Nyirenda MJ et al. Is programming of glucocorticoid receptor expression by prenatal dexamethasone in the rat secondary to metabolic derangement in adulthood? Eur J Endocrinol 2003; 148: 12938.
  • 75
    Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol 2005; 288: R348.
  • 76
    Van Assche FA, Holemans K, Aerts L. Long-term consequences for offspring of diabetes during pregnancy. Br Med Bull 2001; 60: 17382.
  • 77
    Oh W, Gelardi NL, Cha CJ. Maternal hyperglycemia in pregnant rats: its effect on growth and carbohydrate metabolism in the offspring. Metabolism 1988; 37: 114651.
  • 78
    Aerts L, Holemans K, Van Assche FA. Impaired insulin response and action in offspring of severely diabetic rats. In: ShafrirE, ed. Frontiers in Diabetes Research. Lessons from Animal Diabetes III. UK: Smith-Gordon, 1990; 5616.
  • 79
    Kervran A, Guillaume M, Jost A. The endocrine pancreas of the fetus from diabetic pregnant rat. Diabetologia 1978; 15: 38793.
  • 80
    Bihoreau MT, Ktorza A, Picon L. Gestational hyperglycaemia and insulin release by the fetal rat pancreas in vitro: effect of amino acids and glyceraldehyde. Diabetologia 1986; 29: 4349.
  • 81
    Plagemann A, Heidrich I, Rohde W et al. Hyperinsulinaemism during differentiation of the hypothalamus is a diabetogenic and obesity risk factoring rats. Neuroendocrinol Lett 1992; 5: 3738.
  • 82
    Philipps AF, Rosenkrantz TS, Grunnet ML et al. Effects of fetal insulin secretory deficiency on metabolism in fetal lamb. Diabetes 1986; 35: 96472.
  • 83
    Canavan JP, Goldspink DF. Maternal diabetes in rats. II. Effects on fetal growth and protein turnover. Diabetes 1988; 37: 16717.
  • 84
    Aerts L, Vercruysse L, Van Assche FA. The endocrine pancreas in virgin and pregnant offspring of diabetic pregnant rats. Diabetes Res Clin Pract 1997; 38: 919.
  • 85
    Holemans K, Aerts L, Van Assche FA. Evidence for an insulin resistance in the adult offspring of pregnant streptozotocin- diabetic rats. Diabetologia 1991; 34: 815.
  • 86
    Holemans K, Van Bree R, Verhaeghe J et al. In vivo glucose utilization by individual tissues in virgin and pregnant offspring of severely diabetic rats. Diabetes 1993; 42: 5306.
  • 87
    Holemans K, Aerts L, Van Assche FA. Islet transplantation in diabetic rats in mid-pregnancy does not normalize long-term effects on insulin sensitivity in adult offspring of severely diabetic pregnant rats. J Soc Gynecol Invest 2000; 7: 94A (Abstract 181).
  • 88
    Van Assche FA, Aerts L. Long-term effect of diabetes and pregnancy in the rat. Diabetes 1985; 34 (Suppl. 2): 1168.
  • 89
    Silverman BL, Metzger BE, Cho NH et al. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to hyperinsulinism. Diabetes Care 1995; 18: 6117.
  • 90
    Singh R, Pearson E, Avery PJ et al. Reduced beta cell function in offspring of mothers with young-onset type 2 diabetes. Diabetologia 2006; 49: 187680.
  • 91
    Blondeau B, Avril I, Duchene B et al. Endocrine pancreas development is altered in fetuses from rats previously showing intra-uterine growth retardation in response to malnutrition. Diabetologia 2002; 45: 394401.
  • 92
    Holemans K, Aerts K. Lessons from experimental research: lasting consequences of fetal development in an abnormal intra-uterine milieu. In: Van AsscheFA, ed. Diabetes and Pregnancy. UK: Elsevier, 2004; 12341.
  • 93
    Aerts L, Van Assche FA. Intra-uterine transmission of disease. Placenta 2003; 24: 90511.
  • 94
    Simmons RA. Developmental origins of diabetes: the role of oxidative stress. Free Radic Biol Med 2006; 40: 91722.
  • 95
    Evans JL, Goldfine ID, Maddux BA et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 2003; 52: 18.
  • 96
    Simmons RA, Suponitsky-Kroyter I, Selak MA. Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to β-cell failure. J Biol Chem 2005; 31: 2878591.
  • 97
    Luo ZC, Fraser WD, Julien P et al. Tracing the origins of ‘fetal origins’ of adult diseases. Programming by oxidative stress? Med Hypotheses 2006; 66: 3744.
  • 98
    Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol 2004; 122: 36982.
  • 99
    Roberts JM, Lain KY. Recent insights into the pathogenesis of pre-eclampsia. Placenta 2002; 23: 35972.
  • 100
    Karowicz-Bilinska A, Suzin J, Sieroszewski P. Evaluation of oxidative stress indices during treatment in pregnant women with intrauterine growth retardation. Med Sci Monit 2002; 8: CR2116.
  • 101
    Park HK, Jin CJ, Cho YM et al. Changes in mitochondrial DNA content in the male offspring of protein-malnourished rats. Ann N Y Acad Sci 2004; 1011: 20516.
  • 102
    Biri A, Onan A, Devrim E et al. Oxidant status in maternal and cord plasma and placental tissue in gestational diabetes. Placenta 2006; 27: 32732.
  • 103
    Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 1996; 20: 4636.
  • 104
    Tiedge M, Lortz S, Drinkgern J et al. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997; 46: 173342.
  • 105
    Noda M, Yamashita S, Takahashi N et al. Switch to anaerobic glucose metabolism with NADH accumulation in the beta-cell model of mitochondrial diabetes. Characteristics of betaHC9 cells deficient in mitochondrial DNA transcription. J Biol Chem 2002; 277: 4181726.
  • 106
    Sakai K, Matsumoto K, Nishikawa T et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun 2003; 300: 21622.
  • 107
    Efanova IB, Zaitsev SV, Zhivotovsky B et al. Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration. J Biol Chem 1998; 273: 335017.
  • 108
    Kaneto H, Xu G, Fujii N et al. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 2002; 277: 300108.
  • 109
    Piconi L, Quagliaro L, Assaloni R et al. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev 2006; 22: 198203.
  • 110
    Silva JP, Kohler M, Graff C et al. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 2000; 26: 33640.
  • 111
    Peterside IE, Selak MA, Simmons RA. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol Endocrinol Metab 2003; 285: E125866.
  • 112
    Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 2002; 132: 2393S400S.
  • 113
    MacLennan NK, James SJ, Melnyk S et al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics 2004; 18: 4350.
  • 114
    Halsted CH, Villanueva JA, Devlin AM et al. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig. Proc Natl Acad Sci U S A 2002; 99: 100727.
  • 115
    Rees WD, Hay SM, Cruickshank M et al. Maternal protein intake in the pregnant rat programs the insulin axis and body composition in the offspring. Metabolism 2006; 55: 6429.
  • 116
    Thomassin H, Flavin M, Espinas ML et al. Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 2001; 20: 197483.
  • 117
    Waterland RA, Lin JR, Smith CA et al. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 2006; 5: 70516.
  • 118
    Khosla S, Drean W, Brown D et al. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 2001; 64: 91826.
  • 119
    Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2: 2132.
  • 120
    Morgan HD, Sutherland HG, Martin DI et al. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 1999; 23: 3148.
  • 121
    Rakyan VK, Chong S, Champ ME et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A 2003; 100: 253843.