• 1
    Meyer D, Fives-Taylor P. Oral pathogens: from dental plaque to cardiac disease. Curr Opin Microbiol 1998; 1: 8895.
  • 2
    Genco RJ. Periodontal disease and risk for myocardial infection and cardiovascular disease. Cardiovasc Rev Rep 1998; 19: 3440.
  • 3
    Beck JD, Elter JR, Heiss G, Couper D, Mauriello SM, Offenbacher S. Relationship of periodontal disease to carotid artery intima-media wall thickness: the atherosclerosis risk in communities (ARIC) study. Arterioscler Thromb Vasc Biol 2001; 21: 181622.
  • 4
    Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 1992; 63: 32231.
  • 5
    Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000; 71: 155460.
  • 6
    Kozarov EV, Dorn BR, Shelburne CE, Dunn WA Jr, Progulske-Fox A. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler Thromb Vasc Biol 2005; 25: e178.
  • 7
    Holt SC, Kesavalu L, Walker S, Genco CA. Virulence factors of Porphyromonas gingivalis. Periodontology 2000; 20: 168238.
  • 8
    Waddington RJ, Moseley R, Embery G. Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases. Oral Dis 2000; 6: 13851.
  • 9
    Tsai CC, Chen HS, Chen SL et al. Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 2005; 40: 37884.
  • 10
    Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 321: 11967.
  • 11
    Carr A, Frei B. Human neutrophils oxidize low-density lipoprotein by a hypochlorous acid-dependent mechanism: the role of vitamin C. Biol Chem 2002; 383: 62736.
  • 12
    Gorog P, Kovacs I. Lipid peroxidation by activated platelets: a possible link between thrombosis and atherogenesis. Atherosclerosis 1995; 115: 1218.
  • 13
    Berliner JA, Hencke JW. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 1996; 20: 70727.
  • 14
    Galle J, Hansen-Hagge T, Wanner C, Seibold S. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis 2006; 185: 21926.
  • 15
    Memon RA, Staprans I, Noor M et al. Infection and inflammation induce LDL oxidation in vivo. Arterioscler Thromb Vasc Biol 2000; 20: 153642.
  • 16
    Kälvegren H, Bylin H, Leanderson P, Richter A, Grenegård M, Bengtsson T. Chlamydia pneumoniae induces nitric oxide synthase and lipoxygenase-dependent production of reactive oxygen species in platelets. Thromb Haemost 2005; 94: 32735.
  • 17
    Avogaro P, Bon GB, Cazzolato G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis 1988; 8: 7987.
  • 18
    Tertov VV, Bittolo-Bon G, Sobenin IA, Cazzolato G, Orekhov AN, Avogaro P. Naturally occurring modified low density lipoproteins are similar if not identical: more electronegative and desialylated lipoprotein subfractions. Exp Mol Pathol 1995; 62: 16672.
  • 19
    Juul K, Nielsen LB, Munkholm K, Stender S, Nordestgaard BG. Oxidation of plasma low-density lipoprotein accelerates its accumulation and degradation in the arterial wall in vivo. Circulation 1996; 94: 1698704.
  • 20
    Herzberg MC, MacFarlane GD, Liu P, Erickson PR. The platelet as an inflammatory cell in periodontal diseases. In: GencoRJ, HamadaS, LehrerJR, McGheeJR, MergenhagenS, eds. Molecular Pathogenesis of Periodontal Diseases. Washington, DC: ASM Press, 1994; 24755.
  • 21
    Pham K, Feik D, Hammond BF, Rams TE, Whitaker EJ. Aggregation of human platelets by gingipain-R from Porphyromonas gingivalis cells and membrane vesicles. Platelets 2002; 13: 2130.
  • 22
    Katsuragi H, Ohtake M, Kurasawa I, Saito K. Intracellular production and extracellular release of oxygen radicals by PMNs and oxidative stress on PMNs during phagocytosis of periodontopathic bacteria. Odontology 2003; 91: 138.
  • 23
    Pentikäinen MO, Öörni K, Ala-Korpela M, Kovanen PT. Modified LDL – trigger of atherosclerosis and inflammation in the arterial intima. J Intern Med 2000; 247: 35970.
  • 24
    Torzewski M, Klouche M, Hock J et al. Immunohistochemical demonstration of enzymatically modified human LDL and its colocalization with the terminal complement complex in the early atherosclerotic lesion. Arterioscler Thromb Vasc Biol 1998; 18: 36978.
  • 25
    Viita H, Narvanen O, Yla-Herttuala S. Different apolipoprotein B breakdown patterns in models of oxidized low density lipoprotein. Life Sci 1999; 65: 78393.
  • 26
    Bengtsson T, Grenegård M. Platelet–leukocyte interaction in whole blood. Scand J Clin Lab Invest 2002; 62: 112.
  • 27
    Karlsson H, Leanderson P, Tagesson C, Lindahl M. Lipoproteomics I: mapping of proteins in low-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2005; 5: 55165.
  • 28
    Karlsson H, Leanderson P, Tagesson C, Lindahl M. Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2005; 5: 143145.
  • 29
    Da Silva EL, Tsushida T, Terao J. Inhibition of mammalian 15-lipoxygenase-dependent lipid peroxidation in low-density lipoprotein by quercetin and quercetin monoglycosides. Arch Biochem Biophys 1998; 349: 31320.
  • 30
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 24854.
  • 31
    Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC. Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 1997; 23: 3616.
  • 32
    Lindahl M, Stahlbom B, Svartz J, Tagesson C. Protein patterns of human nasal and bronchoalveolar lavage fluids analyzed with two-dimensional gel electrophoresis. Electrophoresis 1998; 19: 32229.
  • 33
    Görg A, Obermaier C, Boguth G et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000; 21: 103753.
  • 34
    Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996; 68: 8508.
  • 35
    Berg C, Hammarstrom S, Herbertsson H et al. Platelet-induced growth of human fibroblasts is associated with an increased expression of 5-lipoxygenase. Thromb Haemost 2006; 96: 6529.
  • 36
    Miyakawa H, Honma K, Qi M, Kuramitsu HK. Interaction of Porphyromonas gingivalis with low-density lipoproteins: implications for a role for periodontitis in atherosclerosis. J Periodontal Res 2004; 39: 19.
  • 37
    Stadtman ER, Oliver CN. Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 1991; 266: 20058.
  • 38
    Yan LJ, Traber MG, Packer L. Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem 1995; 228: 34951.
  • 39
    Lourbakos A, Yuan YP, Jenkins AL et al. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 2001; 97: 37907.
  • 40
    Lourbakos A, Chinni C, Thompson P et al. Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett 1998; 435: 458.
  • 41
    Bodet C, Chandad F, Grenier D. Porphyromonas gingivalis-induced inflammatory mediator profile in an ex vivo human whole blood model. Clin Exp Immunol 2006; 143: 507.
  • 42
    Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84: 1381478.
  • 43
    Wallenfeldt K, Fagerberg B, Wikstrand J, Hulthe J. Oxidized low-density lipoprotein in plasma is a prognostic marker of subclinical atherosclerosis development in clinically healthy men. J Intern Med 2004; 256: 41320.
  • 44
    Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 2006; 10: 389406.
  • 45
    Steinbrecher UP. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 1987; 262: 36038.
  • 46
    Brown BE, Mahroof FM, Cook NL, Van Reyk DM, Davies MJ. Hydrazine compounds inhibit glycation of low-density lipoproteins and prevent the in vitro formation of model foam cells from glycolaldehyde-modified low-density lipoproteins. Diabetologia 2006; 49: 77583.
  • 47
    Edelstein C, Nakajima K, Pfaffinger D, Scanu AM. Oxidative events caused degradation of apo B-100 but not of apo[a] and facilitate enzymatic cleavage of both proteins. J Lipid Res 2001; 42: 166470.
  • 48
    Hashimoto M, Kadowaki T, Tsukuba T, Yamamoto K. Selective proteolysis of apolipoprotein B-100 by Arg-gingipain mediates atherosclerosis progression accelerated by bacterial exposure. J Biochem (Tokyo) 2006; 140: 71323.
  • 49
    Xu N, Dahlbäck B. A novel human apolipoprotein (apoM). J Biol Chem 1999; 274: 3128690.
  • 50
    Karlsson H, Lindqvist H, Tagesson C, Lindahl M. Characterization of apolipoprotein M isoforms in low-density lipoprotein. J Proteome Res 2006; 5: 268590.
  • 51
    Duan J, Dahlback B, Villoutreix BO. Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis. FEBS Lett 2001; 499: 12732.
  • 52
    Zhang XY, Dong X, Zheng L et al. Specific tissue expression and cellular localization of human apolipoprotein M as determined by in situ hybridization. Acta Histochem 2003; 105: 6772.
  • 53
    Xu N, Zhang XY, Dong X, Ekstrom U, Ye Q, Nilsson-Ehle P. Effects of platelet-activating factor, tumor necrosis factor, and interleukin-1alpha on the expression of apolipoprotein M in HepG2 cells. Biochem Biophys Res Commun 2002; 292: 94450.
  • 54
    Luo G, Zhang X, Nilsson-Ehle P, Xu N. Apolipoprotein M. Lipids Health Dis 2004; 3: 21.
  • 55
    Luo G, Hurtig M, Zhang X, Nilsson-Ehle P, Xu N. Leptin inhibits apolipoprotein M transcription and secretion in human hepatoma cell line, HepG2 cells. Biochim Biophys Acta 2005; 1734: 198202.
  • 56
    Wolfrum C, Poy MN, Stoffel M. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat Med 2005; 11: 41822.
  • 57
    Christoffersen C, Nielsen LB, Axler O, Andersson A, Johnsen AH, Dahlback B. Isolation and characterization of human apolipoprotein M-containing lipoproteins. J Lipid Res 2006; 47: 3343.
  • 58
    Faber K, Axler O, Dahlback B, Nielsen LB. Characterization of apoM in normal and genetically modified mice. J Lipid Res 2004; 45: 12728.
  • 59
    Zettler ME, Prociuk MA, Austria JA, Massaeli H, Zhong G, Pierce GN. OxLDL stimulates cell proliferation through a general induction of cell cycle proteins. Am J Physiol Heart Circ Physiol 2003; 284: H64453.
  • 60
    Klouche M, Rose-John S, Schmiedt W, Bhakdi S. Enzymatically degraded, nonoxidized LDL induces human vascular smooth muscle cell activation, foam cell transformation, and proliferation. Circulation 2000; 101: 1799805.
  • 61
    Zettler ME, Prociuk MA, Austria JA, Zhong G, Pierce GN. Oxidized low-density lipoprotein retards the growth of proliferating cells by inhibiting nuclear translocation of cell cycle proteins. Arterioscler Thromb Vasc Biol 2004; 24: 72732.
  • 62
    Llorente-Cortes V, Martinez-Gonzalez J, Badimon L. Esterified cholesterol accumulation induced by aggregated LDL uptake in human vascular smooth muscle cells is reduced by HMG-CoA reductase inhibitors. Arterioscler Thromb Vasc Biol 1998; 18: 73846.
  • 63
    Mander EL, Dean RT, Stanley KK, Jessup W. Apolipoprotein B of oxidized LDL accumulates in the lysosomes of macrophages. Biochim Biophys Acta 1994; 1212: 8092.