• 1
    Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol 2006; 43: 18995.
  • 2
    Kostmann R. Infantile genetic agranulocytosis. A new recessive lethal disease in man. Acta Paediatr 1956; 105(Suppl): 178.
  • 3
    Kostmann R. Infantile genetic agranulocytosis. A review with presentation of ten new cases. Acta Paediatr 1975; 64: 3628.
  • 4
    Carlsson G, Andersson M, Pütsep K et al. Kostmann syndrome or infantile genetic agranulocytosis, part one: celebrating 50 years of clinical and basic research on severe congenital neutropenia. Acta Paediatr 2006; 95: 152632.
  • 5
    Rosenberg PS, Alter BP, Bolyard AA et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006; 107: 462835.
  • 6
    Skokowa J, Germeshausen M, Zeidler C, Welte K. Severe congenital neutropenia: inheritance and pathophysiology. Curr Opin Hematol 2007; 14: 228.
  • 7
    Carlsson G, Wahlin YB, Johansson A et al. Periodontal disease in patients with severe congenital neutropenia of the original Kostmann family. J Periodontol 2006; 77: 74451.
  • 8
    Pütsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 2002; 360: 11449.
  • 9
    Dale DC, Person RE, Bolyard AA et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 2000; 96: 231722.
  • 10
    Melin M, Entesarian M, Carlsson G et al. Assignment of the gene locus for severe congenital neutropenia to chromosome 1q22 in the original Kostmann family from Northern Sweden. Biochem Biophys Res Commun 2007; 353: 5715.
  • 11
    Klein C, Grudzien M, Appaswamy G et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 2007; 39: 8692.
  • 12
    Suzuki Y, Demoliere C, Kitamura D, Takeshita H, Deuschle U, Watanabe T. HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol 1997; 158: 273644.
  • 13
    Gallagher AR, Cedzich A, Gretz N, Somlo S, Witzgall R. The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci USA 2000; 97: 401722.
  • 14
    Sharp TV, Wang HW, Koumi A et al. K15 protein of Kaposi’s sarcoma-associated herpes virus is latently expressed and binds to HAX-1, a protein with anti-apoptotic function. J Virol 2002; 76: 80216.
  • 15
    Carlsson G, Aprikyan AA, Tehranchi R et al. Kostmann syndrome: severe congenital neutropenia associated with defective expression of Bcl-2, constitutive mitochondrial release of cytochrome c, and excessive apoptosis of myeloid progenitor cells. Blood 2004; 103: 335561.
  • 16
    Carlsson G, Melin M, Dahl N et al. Kostmann syndrome or infantile genetic agranulocytosis, part two: understanding the underlying genetic defects in severe congenital neutropenia. Acta Paediatr 2007; 96: 8139.
  • 17
    Carlsson G, Fasth A. Infantile genetic agranulocytosis, morbus Kostmann: presentation of six cases from the original “Kostmann family” and a review. Acta Paediatr 2001; 90: 75764.
  • 18
    Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology 1983; 33: 144452.
  • 19
    Bruininks RH. Bruininks–Oseretsky Test of Motor Proficiency. Circle Pines, MN: American Guidance Service, 1978.
  • 20
    Wechsler D. Adult Intelligence Scale, 3rd edn. San Antonio, TX: The Psychological Corporation, Harcourt Assessment Company, 2002.
  • 21
    Gordon M, Mettelman BB. The assessment of attention standardization and reliability of behaviour based measure. J Clin Psychol 1988; 44: 68290.
  • 22
    Lezak M. Neuropsychological Assessments, 4th edn. New York: Oxford University Press, 2004.
  • 23
    Grzybowska EA, Sarnowska E, Konopinski R, Wilczynska A, Sarnowski TJ, Siedlecki JA. Identification and expression analysis of alternative splice variants of the rat Hax-1 gene. Gene 2006; 371: 8492.
  • 24
    Vandesompele J, De Preter K, Pattyn F et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: RESEARCH0034.1–0034.11.
  • 25
    Carlsson G, Aprikyan AA, Ericson KG et al. Neutrophil elastase and granulocyte colony-stimulating factor receptor mutation analyses and leukemia evolution in severe congenital neutropenia patients belonging to the original Kostmann family in northern Sweden. Haematologica 2006; 91: 58995.
  • 26
    Stott DH. A general test of motor impairment for children. Dev Med Child Neurol 1966; 8: 52331.
  • 27
    Smedler AC, Nilsson C, Bolme P. Total body irradiation: a neuropsychological risk factor in pediatric bone marrow transplant recipients. Acta Paediatr 1995; 84: 32530.
  • 28
    Hippe A, Bylaite M, Chen M et al. Expression and tissue distribution of mouse Hax1. Gene 2006; 379: 11626.
  • 29
    Matsubara K, Imai K, Okada S et al. Severe developmental delay and epilepsy in a Japanese patient with severe congenital neutropenia due to HAX1 deficiency. Haematologica 2007; 92: e1235.
  • 30
    Bouma PA, Bovenkerk AC, Westendorp RG, Brouwere OF. The course of benign partial epilepsy of childhood with centrotemporal spikes: a meta-analysis. Neurology 1997; 48: 4307.
  • 31
    Pinton F, Ducot B, Motte J et al. Cognitive functions in children with benign childhood epilepsy with centrotemporal spikes (BECTS). Epileptic Disord 2006; 8: 1123.
  • 32
    Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 2006; 30: 71829.
  • 33
    Han Y, Chen YS, Liu Z et al. Overexpression of HAX-1 protects cardiac myocytes from apoptosis through caspase-9 inhibition. Circ Res 2006; 99: 41523.
  • 34
    Cho K, Adamson L, Park JH, Zipkin R, Greenhalgh D. Identification of truncated form of mouse HAX-1s gene (HAX-1xs) and characterization of its expression in small intestine and thymus of mice after burn injury. Shock 2002; 18: 2239.
  • 35
    Al-Maghrebi M, Brule H, Padkina M, Allen C, Holmes WM, Zehner ZE. The 3′ untranslated region of human vimentin mRNA interacts with protein complexes containing eEF-1γ and HAX-1. Nucleic Acids Res 2002; 30: 501728.
  • 36
    Sarnowska E, Grzybowska EA, Sobczak K et al. Hairpin structure within the 3′UTR of DNA polymerase β mRNA acts as a post-transcriptional regulatory element and interacts with Hax-1. Nucleic Acids Res 2007; 35: 5499510.