• 1
    [NIH] National Institutes of Health. National Institute of Health Roadmap for Medical Research: nanomedicine. 2006. Available at: Accessed May 15 2006.
  • 2
    [ESF] European Science Foundation. Nanomedicine – An ESF – European Medical Research Councils (EMRC) Forward Look Report. Strasbourg cedex, France: ESF, 2004.
  • 3
    Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Env Health Perspect 2005; 113: 82339.
  • 4
    Society of Toxicology (SOT). 2005. Available at:
  • 5
    Woodrow Wilson Intl. Center for Scholars. News release: nanotech-enabled consumer products top the 1,000 mark. Release No. 64-09, August 25, 2009. Available at: (
  • 6
    NNI: Strategy for Nanotechnology-related environmental, health, and safety research. 2008. Available at:
  • 7
    Royal Society and Royal Academy of Engineering (UK) 2004. Nanoscience and nanotechnologies: opportunities and uncertainties. Available at:
  • 8
    Alvarez PJJ, Colvin V, Lead J, Stone V. Research priorities to advance eco-responsible nanotechnology. ACSNANO 2009; 3: 16169.
  • 9
    Oberdörster G, Stone V, Donaldson K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology 2007; 1: 225.
  • 10
    Kato T, Yashiro T, Murata Y et al. Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res 2003; 311: 4751.
  • 11
    Donaldson K, Brown D, Clouter A et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med 2002; 15: 21320.
  • 12
    Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 2000; 12: 111326.
  • 13
    Duffin R, Tran L, Brown D, Stone V, Donaldson K. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 2007; 19: 84956.
  • 14
    Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Tox Sci 2006; 91: 22736.
  • 15
    Wittmaack K. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 2007; 115: 18794.
  • 16
    Long TC, Tajuba J, Sama P et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 2007; 115: 16317.
  • 17
    Oberdörster G., Yu CP. The carcinogenic potential of inhaled diesel exhaust: a particle effect? J Aerosol Sci 1990; 21(S1): S397401.
  • 18
    Kreyling WG, Semmler-Behnke M, Seitz J et al. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 2009; 21(Sl): 5560.
  • 19
    Wang J, Liu Y, Jiao F et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 2008; 254: 8290.
  • 20
    Benninghoff AD, Hessler W. Nanoparticles damage brain cells. Environ Health News, 2008. Available at:
  • 21
    Phalen RF, Oldham MJ, Nel AE. Tracheobronchial particle dose considerations for in vitro toxicology studies. Toxicol Sci 2006; 92: 12632.
  • 22
    Balásházy I, Hofmann W, Heistracher T. Local particle deposition patterns may play a key role in the development of lung cancer. J Appl Physiol 2003; 94: 171925.
  • 23
    Balásházy I, Hofmann W, Farkas Á, Madas BG. Three-dimensional model for aerosol transport and deposition in expanding and contracting alveoli. Inhal Toxicol 2008; 20: 61121.
  • 24
    Geiser M, Rothen-Rutishauser B, Kapp N et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005; 113: 155560.
  • 25
    Smith AE, Helenius A. How viruses enter animal cells. Science 2004; 304: 23742.
  • 26
    Pante N, Kann M. Nuclear pore complex is able to transport macromolecules with diameters of ∼39 nm. Mol Biol Cell 2002; 13: 42534.
  • 27
    Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2008; 2: 3342.
  • 28
    Han X, Finkelstein JN, Elder A, Biswas P, Jiang J, Oberdörster G. Dose and response metrics in assessing in vitro and in vivo nanoparticle toxicity. Toxicologist 2009; 108: [SOT Abstract].
  • 29
    Kreyling WG, Semmler M, Moller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med 2004; 17: 14052.
  • 30
    Semmler M, Seitz J, Erbe F et al. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 2004; 16: 4539.
  • 31
    Semmler-Behnke M, Takenaka S, Feretsch S et al. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent re-entrainment onto airways epithelia. Environ Health Perspect 2007; 115: 72833.
  • 32
    Kreyling WG, Semmler M, Erbe F et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 2002; 65: 151330.
  • 33
    Cooper JR, Stradling GN, Smith H, Breadmore SE. The reactions of 1.0 nanometre diameter plutonium-238 dioxide particles with rat lung fluid. Int J Radiat Biol 1979; 36: 45366.
  • 34
    Stradling GH, Smith H, Cooper JR. Factors affecting the mobility of actinide oxides and their influence on radiological protection. In: Sanders CL, Cross FT, Lagle GE, Mahaffey JA, eds. Pulmonary Toxicology of Respirable Particles (19th Annual Hanford Life Sciences Symposium). Washington, DC: US DOE. Tech. Info. Ctr. US DOE. CONF-791002, 1980; 20923.
  • 35
    Rinderknecht A, Oberdörster G, De Mesy Bentley K et al. Serum protein coated gold nanoparticles in the perfused human term placenta. Toxicologist 2009; 108: [SOT Abstract].
  • 36
    Müller RH, Keck CM. Drug delivery to the brain realization by novel drug carriers. J Nanosci Nanotechnol 2004; 4: 47183. Referred to Müller and Heinemann (1989).
  • 37
    Cedervall T, Lynch I, Lindman S et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. PNAS 2007; 104: 20505.
  • 38
    Cedervall T, Lynch I, Foy M et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 2007; 46: 57546.
  • 39
    Cedervall T, Lynch I, Lindman S et al. Novel methods to quantify binding rates and affinities of proteins to nanoparticles: effects of nanoparticle composition and size. PNAS 2007; 104: 20505.
  • 40
    Ehrenberg M, McGrath JL. Binding between particles and proteins in extracts: implications for microrheology and toxicity. Acta Biomater 2005; 1: 30515.
  • 41
    Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdorster G, McGrath JL. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 2009; 30: 60310.
  • 42
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 2008; 105: 1426570.
  • 43
    Oberdörster G, Sharp Z, Atudorei V et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004; 16: 43745.
  • 44
    Elder A, Gelein R, Silva V et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 2006; 114: 11728.
  • 45
    Calderón-Garciduenas L, Azzarelli B, Acuna H et al. Air pollution and brain damage. Toxicol Pathol 2002; 30: 37389.
  • 46
    Kreuter J, Shamenkov D, Petrov V et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target 2002; 10: 31725.
  • 47
    Donaldson K, Aitken R, Tran L et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 2006; 92: 522.
  • 48
    Takagi A., Hirose A, Nishimura T et al. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008; 33: 10511.
  • 49
    Ichihara G, Castranova V, Tanioka A, Miyazawa K. Letter to the editor. J Toxicol Sci 2008; 33: 38.
  • 50
    Poland CA, Duffin R, Kinloch I et al. Carbon nanotubes introduced into the abdominal cavity of icr show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008; 3: 4238. Available at:
  • 51
    Davis JMG, Jones AD. Comparisons of the pathogenicity of long and short fibres of chrysotile asbestos in rats. Br J Exp Path 1988; 69: 71737.
  • 52
    Sakamoto Y, Nakae D, Fukumori N et al. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 2009; 34: 6576.
  • 53
    Bianchi C, Bianchi T. Malignant mesothelioma: global incidence and relationship with asbestos. Ind Health 2007; 45: 37987.
  • 54
    Simeonova P, Luster MI. Iron and reactive oxygen species in the asbestos-induced tumor necrosis factor-alpha response from alveolar macrophages. Am J Resp Cell Mol Biol 1995; 12: 67683.
  • 55
    Gelzleichter TR, Bermudez E, Mangum JB, Wong BA, Everitt JI, Moss OR. Pulmonary and pleural responses in Fischer 344 rats following short-term inhalation of a synthetic vitreous fiber. Fundam Appl Toxicol 1996; 30: 318.
  • 56
    Dodson RF, Atkinson MA, Levin JL. Asbestos fiber length as related to potential pathogenicity: a critical review. Am J Ind Med 2003; 44: 2917.
  • 57
    Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci 2009; 110: 4428.
  • 58
    Moalli PA, MacDonald JL, Goodglick LA, Kane AB. Acute injury and regeneration of the mesothelium in response to asbestos fibers. Am J Pathol 1987; 128: 42645.
  • 59
    Goodglick LA, Kane AB. Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo. Cancer Res 1990; 50: 515363.
  • 60
    Miserocchi G, Sancini G, Mantegazza F, Chiappino G. Translocation pathways for inhaled asbestos fibers. Environ Health 2008; 7: 4.
  • 61
    Davis JMG, Jones AD, Miller BG. Experimental studies in rats on the effects of asbestos inhalation coupled with the inhalation of titanium dioxide or quartz. Int J Exp Pathol 1991; 72: 50125.
  • 62
    Shvedova AA, Kisin E, Murray AR et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 2008; 295: L55265.
  • 63
    Liu Z, Chen K, Davis C et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008; 68: 665260.
  • 64
    National Academy of Sciences (NAS). Risk Assessment in the Federal Government: Managing the Process. Washington, DC: NAS 1983.
  • 65
    Heinrich U, Fuhst R, Rittinghausen S et al. Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 1995; 7: 53356.
  • 66
    Oberdörster G, Maynard A, Donaldson K et al. and a report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005; 2: 8.
  • 67
    Seagrave J, McDonald JD, Gigliotti AP et al. Mutagenicity and in vivo toxicity of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions. Toxicol Sci 2002; 70: 21226.
  • 68
    Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 2007; 97: 16380.
  • 69
    Rushton EK, Jiang J, Leonard SS et al. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response-mixes. JTEH, 2009, in press.
  • 70
    Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 2009; 34: 55967.
  • 71
    Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 2009; 11: 7789.