SEARCH

SEARCH BY CITATION

References

  • 1
    CR-UK, CancerStats Incidence – UK. Cancer Research UK 2006. CR-UK, CancerStats Incidence – UK. http://www.cancerresearchuk.org , 2009. http://info.cancerresearchuk.org/cancerstats/types/breast/index.htm?script=true accessed 02/01/2010.
  • 2
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74108.
  • 3
    Tryggvadottir L, Sigvaldason H, Olafsdottir GH et al. Population-based study of changing breast cancer risk in Icelandic BRCA2 mutation carriers, 1920-2000. J Natl Cancer Inst 2006; 2: 11622.
  • 4
    Eaton SB, Pike MC, Short RV et al. Women’s reproductive cancers in evolutionary context. Q Rev Biol 1994; 99: 35367.
  • 5
    Huang Z, Hankinson SE, Colditz GA et al. Dual effects of weight and weight gain on breast cancer risk. JAMA 1997; 17: 140711.
  • 6
    Renehan AG, Soerjomataram I, Lietzman MF. Interpreting the epidemiological evidence linking obesity and cancer: a framework for population-attributable risk estimations in Europe. Eu. J. Cancer 2010; 46: 258192.
  • 7
    Friedenreich CM. Physical activity and breast cancer: review of the epidemiologic evidence and biologic mechanisms. Recent Results Cancer Res 2011; 188: 12539.
  • 8
    Evans DG, Fentiman IS, McPherson K, Asbury D, Ponder BA, Howell A. Familial breast cancer. BMJ 1994; 6922: 1837.
  • 9
    Evans DGR, Cuzick J, Howell A. Cancer genetics clinics. Eur J Cancer 1996; 32: 3912.
  • 10
    Parmigiani G, Berry DA, Aquilar O. Determining carrier probabilities for breast cancer susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 1998; 62: 1458.
  • 11
    Evans DG, Eccles DM, Rahman N et al. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J Med Genet 2004; 41: 47480.
  • 12
    Antoniou AC, Cunningham AP, Peto J et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 2008; 8: 145766.
  • 13
    Mavaddat N, Rebbeck TR, Lakhani SR, Easton DF, Antoniou AC. Incorporating tumour pathology information into breast cancer risk prediction algorithms. Breast Cancer Res 2010; 12: R28.
  • 14
    Evans DG, Lalloo F, Cramer A et al. Addition of pathology and biomarker information significantly improves the performance of the Manchester scoring system for BRCA1 and BRCA2 testing. J Med Genet 2009; 46: 8117.
  • 15
    Gail MH, Brinton LA, Byar DP et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989; 81: 187986.
  • 16
    Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 2004; 7: 111130.
  • 17
    Maurice A, Evans DG, Shenton A et al. Screening younger women with a family history of breast cancer – does early detection improve outcome? Eur J Cancer 2006; 42: 138590.
  • 18
    Domchek SM, Friebel TM, Singer CF et al. Association of risk reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 2010; 1: 96775.
  • 19
    FH01 Collaborative Teams. Mammographic surveillance in women younger than 50 years who have a family history of breast cancer: tumour characteristics and projected effect on mortality in the prospective, single-arm, FH01 study. Lancet Oncol 2010; 11: 112734.
  • 20
    Kurian AW, Sigal BM, Plevritis SK. Survival analysis of cancer risk reduction strategies for BRCA1/2 mutation carriers. J Clin Oncol 2010; 2: 22231.
  • 21
    Hagen AI, Kvistad KA, Maehle L et al. Sensitivity of MRI versus conventional screening in the diagnosis of BRCA-associated breast cancer in a national prospective series. Breast 2007; 16: 36774.
  • 22
    Costantino JP, Gail MH, Pee D et al. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst 1999; 91: 15418.
  • 23
    Spiegelman D, Colditz GA, Hunter D, Hertzmark E. Validation of the Gail et al. model for predicting individual breast cancer risk. J Natl Cancer Inst 1994; 8: 6007.
  • 24
    Amir E, Evans DG, Shenton A et al. Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J Med Genet 2003; 40: 80714.
  • 25
    Novotny J, Pecen L, Petruzelka L et al. Breast cancer risk assessment in the Czech female population – an adjustment of the original Gail model. Breast Cancer Res Treat 2006; 95: 2935.
  • 26
    Decarli A, Calza S, Masala G, Specchia C, Palli D, Gail MH. Gail model for prediction of absolute risk of invasive breast cancer: independent evaluation in the Florence-European Prospective Investigation Into Cancer and Nutrition cohort. J Natl Cancer Inst 2006; 23: 168693.
  • 27
    Chlebowski RT, Anderson GL, Lane DS et al. Predicting risk of breast cancer in postmenopausal women by hormone receptor status. J Natl Cancer Inst 2007; 22: 1695705.
  • 28
    Amir E, Freedman OC, Seruga B, Evans DG. Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 2010; 102: 68091.
  • 29
    Jacobi CE, de Bock GH, Siegerink B, van Asperen CJ. Differences and similarities in breast cancer risk assessment models in clinical practice: which model to choose? Breast Cancer Res Treat 2009; 115: 38190.
  • 30
    McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15: 115969.
  • 31
    Cummings SR, Tice JA, Bauer S et al. Prevention of breast cancer in postmenopausal women: approaches to estimating and reducing risk. J Natl Cancer Inst 2009; 6: 38498.
  • 32
    Barlow WE, White E, Ballard-Barbash R et al. Prospective breast cancer risk prediction for women undergoing screening mammography. J Natl Cancer Inst 2006; 17: 120414.
  • 33
    Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med 2008; 5: 33747.
  • 34
    Chen J, Pee D, Ayyagari R et al. Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density. JNCI 2006; 98: 121526.
  • 35
    Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2007; 39: 8659.
  • 36
    Hunter DJ, Kraft P, Jacobs KB et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007; 39: 8704.
  • 37
    Zheng W, Long J, Gao YT et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 2009; 41: 3248.
  • 38
    Turnbull C, Ahmed S, Morrison J et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 2010; 42: 5047.
  • 39
    van Zitteren M, van der Net JB, Kundu S, Freedman AN, van Duijn CM, Janssens AC. Genome-based prediction of breast cancer risk in the general population: a modeling study based on meta-analyses of genetic associations. Cancer Epidemiol Biomarkers Prev 2011; 20: 922.
  • 40
    Gail MH. Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. J Natl Cancer Inst 2008; 14: 103741.
  • 41
    Gail MH. Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model. J Natl Cancer Inst 2009; 13: 95963.
  • 42
    Comen E, Balistreri L, Gönen M et al. Discriminatory accuracy and potential clinical utility of genomic profiling for breast cancer risk in BRCA-negative women. Breast Cancer Res Treat 2011; 127: 47987.
  • 43
    Mealiffe ME, Stokowski RP, Rhees BK, Prentice RL, Pettinger M, Hinds DA. Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information. J Natl Cancer Inst 2010; 102: 161827.
  • 44
    Park JH, Wacholder S, Gail MH et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 2010; 42: 5705.
  • 45
    Chatterjee N, Park JH, Caporaso N, Gail MH. Predicting the future of genetic risk prediction. Cancer Epidemiol Biomarkers Prev 2011; 20: 38.
  • 46
    Pharoah PD, Antoniou AC, Easton DF, Ponder BA. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 2008; 26: 2796803.
  • 47
    Milne RL, Gaudet MM, Spurdle AB et al. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Res 2010; 12: R110.
  • 48
    Travis RC, Reeves GK, Green J et al. Gene-environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study. Lancet 2010; 9732: 214351.
  • 49
    Santen R, Boyd N, Chlebowski RT et al. Critical assessment of new risk factors for breast cancer: considerations for development of an improved risk prediction model. Endocr Relat Cancer 2007; 14: 16987.
  • 50
    Cuzick J, DeCensi A, Arun B et al. Preventive therapy for breast cancer: a consensus statement. Lancet Oncol 2011; 12: 496503.
  • 51
    Cuzick J, Powles T, Veronesi U et al. Overview of the main outcomes in breast-cancer prevention trials. Lancet 2003; 9354: 296300.
  • 52
    Vogel VG, Costantino JP, Wickerham DL et al. Update of the national surgical adjuvant breast and bowel project Study of Tamoxifen and Raloxifene (STAR) P-2 trial: preventing breast cancer. Cancer Prev Res (Phila) 2010; 3: 696706.
  • 53
    Goss PE, Ingle JN, Alés-Martínez JE et al. Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 2011; 25: 238191.
  • 54
    Cuzick J. IBIS II: a breast cancer prevention trial in postmenopausal women using the aromatase inhibitor anastrozole. Expert Rev Anticancer Ther 2008; 8: 137785.
  • 55
    Fisher B, Costantino JP, Wickerham DL et al. Tamoxifen for the prevention of breast cancer: current status of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst 2005; 22: 165262.
  • 56
    Martino S, Cauley JA, Barrett-Connor E et al. Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst 2004; 23: 175161.
  • 57
    Barrett-Connor E, Mosca L, Collins P et al. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med 2006; 2: 12537.
  • 58
    Cuzick J, Forbes JF, Sestak I et al. Long-term results of tamoxifen prophylaxis for breast cancer – 96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst 2007; 4: 27282.
  • 59
    Freedman AN, Yu B, Gail MH et al. Benefit/Risk assessment for breast cancer chemoprevention with raloxifene or tamoxifen for women age 50 years or older. J Clin Oncol 2011; 17: 232733.
  • 60
    Cuzick J, Warwick J, Pinney E et al. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst 2011; 9: 74452.
  • 61
    Harvie M, Howell A, Vierkant RA et al. Association of gain and loss of weight before and after menopause with risk of postmenopausal breast cancer in the Iowa women’s health study. Cancer Epidemiol Biomarkers Prev 2005; 14: 65661.
  • 62
    Eliassen AH, Colditz GA, Rosner B, Willett WC, Hankinson SE. Adult weight change and risk of postmenopausal breast cancer. JAMA 2006; 2: 193201.
  • 63
    Byers T, Sedjo RL. Does intentional weight loss reduce cancer risk? Diabetes Obes Metab 2011; 13: 106372.
  • 64
    Teras LR, Goodman M, Patel AV, Diver WR, Flanders WD, Feigelson HS. Weight loss and postmenopausal breast cancer in a prospective cohort of overweight and obese US women. Cancer Causes Control 2011; 22: 5739. Epub 2011 Feb 13.
  • 65
    Prentice RL, Caan B, Chlebowski RT et al. Low-fat dietary pattern and risk of invasive breast cancer: the women’s health initiative randomized controlled dietary modification trial. JAMA 2006; 6: 62942.
  • 66
    Bennett RL, Sellars SJ, Moss SM. Interval cancers in the NHS breast cancer screening programme in England, Wales and Northern Ireland. Br J Cancer 2011; 4: 5717.
  • 67
    Kirsh VA, Chiarelli AM, Edwards SA et al. Tumor characteristics associated with mammographic detection of breast cancer in the ontario breast screening program. J Natl Cancer Inst 2011; 12: 94250.
  • 68
    Gilbert FJ, Astley SM, McGee MA et al. Single reading with computer aided detection and double reading of screening mammograms in the United Kingdom National Breast Screening Program. Radiology 2006; 241: 4753.
  • 69
    Boyd NF, Martin LJ, Yaffe M, Minkin S. Mammographic density. Breast Cancer Res 2009; 11(Suppl. 3): S4.
  • 70
    Shepherd JA, Kerlikowske K, Ma L et al. Volume of mammographic density and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2011; 20: 147382.
  • 71
    Mandelson MT, Oestreicher N, Porter PL et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 2000; 92: 10817.
  • 72
    Nixon RM, Pharoah P, Tabar L et al. Mammographic screening in women with a family history of breast cancer: some results from the Swedish two-county trial. Rev Epidém et Santé Publ 2000; 48: 32531.
  • 73
    Rockhill B, Spiegelman D, Byrne C, Hunter DJ, Colditz GA. Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J Nat Cancer Inst 2001; 93: 35866.