• Baddeley, A.J. & Cruz-Orive, L.M. (1995) The Rao–Blackwell theorem in stereology and some counterexamples. Adv. Appl. Probab. 27, 219.
  • Byrd, R.H., Lu, P., Nocedal, J. & Zhu, C. (1995) A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 11901208.
  • Chowla, S. & Selberg, A. (1949) On Epstein's zeta function (I). Proc. Acad. Sci. USA, 35, 371374.
  • Conway, J. & Sloane, N., eds. (1999) Sphere Packings, Lattices and Groups. Springer-Verlag, New York.
  • Crandall, R.E. (1998) Fast evaluation of Epstein zeta functions. URL
  • Cruz-Orive, L.M. (1989) On the precision of systematic sampling: a review of Matheron's transitive methods. J. Microsc. 153, 315333.
  • Gual Arnau, X. & Cruz-Orive, L.M. (1998) Variance prediction under systematic sampling with geometric probes. Adv. Appl. Probab. 28, 982992.
  • Gundersen, H.J.G. & Jensen, E.B. (1987) The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147, 229263.
  • Jensen, E.B. & Gundersen, H.J.G. (1981) Stereological ratio estimation based on counts from integral test systems. J. Microsc. 125, 5166.
  • Kellerer, A.M. (1989) Exact formulae for the precision of systematic sampling. J. Microsc. 153, 285300.
  • Kendall, D.G. (1948) On the number of lattice points inside a random oval. Q. J. Math. Oxford Ser. 19, 126.
  • Kendall, D.G. & Rankin, R. (1953) On the number of points of a given lattice in a random hypersphere. Q. J. Math. Oxford. Ser. 4, 178189.
  • Kiêu, K. & Mora, M. (2004) Asymptotics for geometric spectral densities and a stochastic approach of the lattice-point problem. Mathematicae Notae XLII, 7793.
  • Kiêu, K. & Mora, M. (2005) Stereological Estimation of Mean Volume: Precision of Three Simple Sampling Designs. Technical Report 2005-1. Unité de Mathématiques et informatique appliquées, INRA, Domaine de Vilvert, Jouy-en-Josas.
  • Matérn, B. (1985) Estimating area by dot counts. Contributions to Probability and Statistics in Honour of Gunnar Blom (ed. by J.Lanke and G.Lindgren), pp. 243257. Department of Mathematical Statistics, University of Lund.
  • Matérn, B. (1989) Precision of area estimation: a numerical study. J. Microsc. 153, 269284.
  • Matheron, G. (1971) The Theory of Regionalized Variables and its Applications. Technical Report. Centre de morphologie mathématique, Ecole des mines de Paris, Paris.
  • Matheron, G. (1975) Random Sets and Integral Geometry. John Wiley & Sons, New-York.
  • Matheron, G. (1993) Une conjecture sur la covariance d’un ensemble aléatoire. Cahiers de Géostatistiques Fasc. 3. Ecole des Mines de Paris, Paris.
  • Rankin, R.A. (1953) A minimum problem for the Epstein zeta function. Proc. Glasgow Math. Assoc. 1, 149158.
  • Schlather, M. (2001) Simulation and analysis of random fields. R. News, 1, 1820.