SEARCH

SEARCH BY CITATION

References

  • Albert, O., Sherman, L., Mourou, G. & Norris, T.B. (2000) Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Optics Lett. 25, 5254.
  • Arnison, M.R., Larkin, K.G., Sheppard, C.J.R., Smith, N.I. & Cogswell, C.J. (2004) Linear phase imaging using differential interference contrast microscopy. J. Microscopy 214, 712.
  • Bartsch, D.U., Zhu, L., Sun, P.C., Fainman, S. & Freeman, W.R. (2002). Retinal imaging with a low-cost micromachined membrane deformable mirror. J. Biomed. Opt. 7, 451456.
  • Beverage, J.L., Shack, R.V. & Descour, M.R. (2002) Measurement of the three-dimensional microscope point spread function using a Shack-Hartman wavefront sensor. J. Microscopy 205, 6175.
  • Bifano, T., Bierden, P., Perreault, J. (2004) Micromachined deformable mirrors for dynamic wavefront control. SPIE 5553, 116.
  • Booth, M.J., Neil, M.A.A. & Wilson, T. (1998) Aberration correction for confocal imaging in refractive-index-mismatched media. J. Microsc. 192, 9098.
  • Booth, M.J., Neil, M.A.A., Juskaitis, R. & Wilson, T. (2002) Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. U.S.A. 99, 57885792.
  • Dayton, D., Gonglewski, J., Restaino, S., Martin, J., Phillips, J., Hartman, M., Browne, S., Kervin, P. et al. (2002) Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites. Opt. Express 10, 15081519.
  • Gibson, S.F. & Lanni, F. (1991) Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J. Opt. Soc. Am. A 8, 16011613.
  • Gustafsson, M.G.L. (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microscopy 198, 8287.
  • Gustafsson, M.G. (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natnl. Acad. Sci. U.S.A. 102, 1308113086.
  • Hanser, B.M. (2003) computational corrections for three-dimensional wide field fluorescence microscopy. PhD Dissertation, University of California at San Francisco .
  • Hanser, B.M., Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. (2002) Phase retrieval for high-numerical-aperture optical systems. Opt. Lett. 28, 801803.
  • Hardy, J.W. (1998) Adaptive Optics for Astronomical Telescopes. Oxford University Press, New York .
  • Hiraoka, Y., Sedat, J.W. & Agard, D. (1990) Determination of the three-dimensional imaging properties of a light microscope system. Biophys. J. 57, 325333.
  • Juskaitis, R. & Wilson, T. (1997) Pupil function aberration can be accurately described by phase function. J. Microscopy 189, 811.
  • Kam, Z. (1998). Microscopic differential interference contrast image processing by line integration (LID) and deconvolution. BioImaging 6, 166176.
  • Kam, Z. Agard, D.A. & Sedat, J.W. (1997) Three-dimensional microscopy in thick biological samples: a fresh approach for adjusting focus and correcting spherical aberration. BioImaging 5, 4049.
  • Kam, Z., Hanser, B., Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. (2001) Computational adaptive optics for live three-dimensional biological imaging. Proc. Natnl. Acad. Sci. U.S.A. 98, 37903795.
  • King, S.V. & Cogswell, C.J. (2004) A phase-shifting DIC technique for measuring 3D phase objects: experimental verification. Proc. SPIE 5324, 191196.
  • Lee, J-H., Kim, D-W., Wu, Y-H., Yu, C-J., Lee, S-D. & Wu, S-T. (2005) High-speed infrared phase modulators using short helical pitch ferroelectric liquid crystals. Opt. Express 13, 77327740.
  • Marsh, P.N., Burns, D. & Girkin, J.M. (2003) Practical implementation of adaptive optics in multiphoton microscopy. Opt. Express 11, 11231130.
  • Ragazzoni, R., Diolaiti, E., Farinato, J., Fedrigo, E., Marchetti, E., Tordi, M. & Kirkman, D. (2002) Multiple field of view layer oriented adaptive optics. Astron. Astrophys. 396, 731744.
  • Ragazzoni, R., Marchetti, E. & Vatente, G. (2000) Adaptive-optics corrections available for the whole sky. Nature 403, 5456.
  • Ross, K.F.A. (1954) The changes of water distribution in cytoplasm and nuclear sap during division as indicated by changes in their refractive indices. J. Micrsc. Sci. 95, 425432.
  • Schwertner, M., Booth, M.J. & Wilson, T. (2004) Characterizing specimen induced aberrations for high NA adaptive optical microscopy. Opt. Express 12, 65406552.
  • Sharma, A., Kumar, D.V. & Ghatak, A.K. Tracining (1982) Rays through graded-index media – a new method. Appl. Opt. 21, 984987.
  • Shirai, T. (2002) Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging. Appl Opt. 41, 401323.
  • Swedlow, J.R. & Platani, M. (2002) Live cell imaging using wide-field microscopy and deconvolution. Cell Struct. Funct. 27, 335341.
  • Swedlow, J.R., (2003) Quantitative fluorescence microscopy and image deconvolution. Methods Cell Biol. 72, 349367.
  • Swedlow, J.R., Hu, K., Andrews, P.D., Roos, D.S., & Murray, J.M. (2002) Measuring tubulin content in Toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy. Proc. Natl. Acad. Sci. U.S.A. 99, 20142019.
  • Swedlow, J.R., Sedat, J.W. & Agard, D.A. (1997) Deconvolution in optical microscopy. Deconvolution of Images and Spectra, 2nd ed., (ed. by Jansson, P.A.), pp. 284309. Academic Press, NY .
  • Theofanidou, E., Wilson, L., Hossack, W.J. & Arlt, J. (2004) Spherical aberration correction for optical tweezers. Opt. Comm. 236, 145150.
  • Tokovinin, A. Le Louarn, M. & Sarazin, M.(2000) Isoplanatism in a multiconjugate adaptive optics system. J. Opt. Soc. Am. A 17, 18191827.
  • Tsai, P.S., Kim, T.N., Campbell, K., Groisman, A., Kam, Z. & Kelinfeld, D. (2005) Spherical aberration correction in deep multi-photon imaging. OSA Annual Meeting, Focus in Optics, Tucson , AZ . October.
  • Tyson, K.K. (1991) Principles of Adaptive Optics. Academic, New York .
  • Van Munster, E.B., Van Vliet, L.J. & Aten, J.A. (1997) Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope. J. Microscopy 188, 149157.
  • Van Munster, E.B., Winter, E.K. & Aten, J.A. (1998) Measurement-based evaluation of optical pathlength distributions reconstructed from simulated differential interference contrast images. J. Microscopy 191, 170176.
  • Wizinowich, P.L. & Bonaccini, D. (Eds.) (2002) Adaptive optical system technologies II. SPIE Proc. V 4839, 2226 Aug. Waikoloa, Hawaii.
  • Yamaguchi, K. (2003) Immersion microscope objective lens. US Patent No. 6,519,092 B2.