• 1
    Bernard C. (1949). An introduction to the study of experimental medicine. Henry Schuman, New York .
  • 2
    Cannon W. (1932). The wisdom of the body. Norton, New York .
  • 3
    Solve H. (1946). The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab. 6: 117230.
  • 4
    Addison T. (1855). On the constitutional and local effects of disease of the suprarenal capsules. Highley, London .
  • 5
    Britton S, Silvette H. (1932). The apparent prepotent function of the adrenal glands. Am J Physiol. 100: 701713.
  • 6
    Ingle D. (1950). The biologic properties of cortisone: a review. J Clin Endocrinol Metab. 10: 13121354.
  • 7
    Rowntree L, Green C, Swingle W, Pfiffner J. (1930). The treatment of patients with Addison's disease with the ‘cortical hormone’ of Swingle and Pfiffner. Science. 72: 482483.
  • 8
    Evans G. (1936). The adrenal cortex and endogenous carbohydrate formation. Am J Physiol. 114: 297308.
  • 9
    Popa G, Fielding U. (1933). Hypophysioportal vessels and their colloid accompaniment. J Anat. 67: 227232.
  • 10
    Houssay B, Biascotti A, Samartino G. (1935). Modifications functionelles de l'hypophyse apres les lesions infundibuloturberiennes chez le crapaud. CR Soc Biol (Paris). 120: 725727.
  • 11
    Wislocki G, King L. (1936). Permeability of the hypophysis and the hypothalamus to vital dyes, with study of the hypophyseal blood supply. Am J Anat. 58: 421472.
  • 12
    Scharrer B. (1975). Neurosecretion and its role in neuroendocrine regulation. In: MeitesJ, DonovanB and McCannS, eds. Pioneers in neuroendocrinology, 255266. Plenum Press, New York .
  • 13
    Harris G. (1948). Neural control of the pituitary gland. Physiol Rev. 28: 139179.
  • 14
    Plotsky P. (1987). Regulation of hypophysiotropic factors mediating ACTH secretion. In: GanongW, DallmanM and RobertsJ, eds. The hypothalamic-pituitary-adrenal axis revisited, vol. 512: 205217. New York Academy of Sciences, New York .
  • 15
    Antoni F. (1986). Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev. 7: 351357.
  • 16
    Merchenthaler I, Vigh S, Petrusz P, Schally A. (1982). Immunocytochemical localization of corticotropin releasing factors (CRF) in the rat brain. Am J Anat. 165: 385396.
  • 17
    Paull W, Gibbs F. (1983). The corticotropin releasing factor (CRF) neurosecretory system in intact, adrenalectomized, and adrenalectomized-dexamethasone treated rats. Histochemistry. 78: 303316.
  • 18
    Swanson L, Sawchenko P, Rivier J, Vale W. (1983). Organization of ovine corticotropin releasing factor (CRF)-immunoactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology. 36: 165186.
  • 19
    Vale W, Spiess J, Rivier C, Rivier J. (1981). Characterisation of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science. 213: 13941397.
  • 20
    Rivier C, Plotsky P. (1986). Mediation by corticotropin releasing factor (CRF) of adenohypophysial hormone secretion. Annu Rev Physiol. 48: 475494.
  • 21
    Bruhn T, Sutton R, Rivier C, Vale W. (1984). Corticotropin-releasing factor regulates proopiomelanocortin messenger ribonucleic acid levels in vivo. Neuroendocrinology. 39: 170175.
  • 22
    Eberwine J, Jonassen J, Evinger M, Roberts J. (1987). Complex transcriptional regulation by glucocorticoids and corticotropin-releasing hormone of proopiomelanocortin gene expression in rat pituitary cell cultures. DNA. 6: 483492.
  • 23
    Autelitano D, Blum M, Lopingco M, Allen R, Roberts J. (1990). Corticotropin-releasing factor differentially regulates anterior and intermediate pituitary lobe proopiomelanocortin gene transcription, nuclear precursors RNA and mature mRNA in vivo. Neuroendocrinology. 51: 123130.
  • 24
    Gillies G, Linton E, Lowry P. (1982). Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 299: 355357.
  • 25
    Vale W, Vaughan J, Smith M, Yamamoto G, Rivier J, Rivier C. (1983). Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology. 113: 11211123.
  • 26
    Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W. (1987). Interleukin-1 stimulates the secretion of hypothalamic corticotropin releasing factor. Science. 238: 522524.
  • 27
    Munck A, Guyre P, Holbrook N. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 5: 2544.
  • 28
    Dallman M, Jones M. (1973). Corticosteroid feedback control of ACTH secretion: effects of stress-induced corticosterone secretion in subsequent stress response in the rat. Endocrinology. 92: 13671375.
  • 29
    Mamoud S, Jones M. (1977). Relative importance of corticosteroid negative-feedback at the hypothalamus and anterior pituitary gland. J Endocrinol. 75: 29P.
  • 30
    Keller-Wood M, Dallman M. (1984). Corticosteroid inhibition of ACTH secretion. Endocr Rev. 5: 124.
  • 31
    Plotsky P. (1989). Regulation of the adrenocortical axis: hypophysiotropic coding, catecholamines and glucocorticoids. In: RoseF, ed. The control of the hypothalamo-pituitary-adrenocortical axis, 131146. International Universities Press, Madison .
  • 32
    Fink G, Aiyer M, Chiappa S, Henderson S, Jamieson M, Levy-Perez V, Pickering A, Sarkar D, Sherwood N, Speight A, Watts A. (1983). Gonadotropin-releasing hormone release into the hypophyseal portal blood and mechanism of action. In: McKernsK and PanticV, eds. Hormonally active brain peptides, structure and function, 397426. Plenum Press, New York .
  • 33
    Engler D, Pham T, Fullerton M, Funder J, Clarke I. (1988). Studies of the regulation of the hypothalamic-adrenal axis in sheep with hypothalamic-pituitary disconnection. I. Effect of an audiovisual stimulus and insulin-induced hypoglycemia. Neuroendocrinology. 48: 551560.
  • 34
    Clarke M, Lowry P, Gillies G. (1987). Assessment of corticotropin-releasing factor, vasopressin and somatostatin secretion by fetal hypothalamic neurons in culture. Neuroendocrinology. 46: 147154.
  • 35
    Engler D, Liu J-P, Horton R, Clarke I. (1989). Evidence that central noradrenergic and adrenergic pathways activate the hypothalamic-pituitary-adrenal (HPA) axis in the sheep. Proc 71st Ann Meeting Endocr Soc, Seattle, Washington. Abstr. 1731
  • 36
    Caraty A, Oliver C, Locatelli A, Conte-Devolx B. (1988). CRF and AVP levels in hypophysial portal blood of conscious unrestrained castrated rams. Endocrinology 122: 225.
  • 37
    Caraty A, Grino M, Locatelli A, Oliver C. (1988). Secretion of corticotropin releasing factor (CRF) and vasopressin (AVP) into the hypophysial portal blood of conscious, unrestrained rams. Biochem Biophys Res Commun. 155: 841849.
  • 38
    Ixart G, Barbanel G, Conte-Devolx B, Grino M, Oliver C, Assen-macher I. (1987). Evidence for basal and stress-induced release of corticotropin releasing factor in the push-pull cannulated median eminence. Neurosci Lett. 74: 8589.
  • 39
    Linton E, MClean C, Nieuwenhuyzen-Kruseman A, Tilders F, Veen EVD, Lowry P. (1987). Direct measurement of human plasma corticotropin-releasing hormone by ‘two-site’ immunoradiometric assay. J Clin Endocrinol Metab. 64: 10471053.
  • 40
    Campbell E, Linton E, Wolfe C, Scraggs P, Jones M, Lowry P. (1987). Plasma corticotropin-releasing hormone concentration during pregnancy and parturition. J Clin Endocrinol Metab. 64: 10541059.
  • 41
    Yokoe T, Audhya T, Brown C, Hutchinson B, Passarelli J, Hollander C. (1988). Corticotropin-releasing factor levels in the peripheral plasma and hypothalamus of the rat vary in parallel with changes in the pituitary-adrenal axis. Endocrinology. 123: 13481354.
  • 42
    Sumitomo T, Suda T, Tomori N, Yajima F, Nakagami Y, Ushiyama T, Demura H, Shizume K. (1987). Immunoreactive corticotropin-releasing factor in rat plasma. Endocrinology. 120: 13911396.
  • 43
    Sasaki A, Sato S, Murakami O, Go M, Inoue M, Shimizu Y, Hanew K, Andoh N, Sato I, Sasano N, Yoshinaga K. (1987). Immunoreactive corticotropin-releasing hormone present in human plasma may be derived from both hypothalamic and extrahypothalamic sources. J Clin Endocrinol Metab. 65: 176182.
  • 44
    Plotsky P, Otto S, Toyama T, Sutton S. (1990). Lack of correlation between immunoreactive corticotropin-releasing factor concentration profiles in hypophysial-portal and peripheral plasma. J Neuroendocrinol. 2: 6569.
  • 45
    Berkenbosch F, Goeij DD, Tilders F. (1989). Hypoglycemia enhances turnover of corticotropin-releasing factor and vasopressin in the zona externa of the rat median eminence. Endocrinology. 125: 2834.
  • 46
    Berkenbosch F, Oers JV, Key AD, Tilders F, Besedovsky H. (1987). Corticotropin releasing factor producing neurons in the rat activated by interleukin 1. Science. 238: 524526.
  • 47
    Berkenbosch F, Tilders F. (1988). Effect of axonal transport blockade on corticotropin-releasing factor immunoreactivity in the median eminence of intact and adrenalectomized rats: relationship between depletion rate and secretory activity. Brain Res. 442: 312320.
  • 48
    Plotsky P. (1985). Hypophysiotropic regulation of adrenohypophysial ACTH secretion. Fed Proc. 44: 207213.
  • 49
    Gibbs D. (1985). Inhibition of Corticotropin release during hypothermia: the role of Corticotropin releasing factor, vasopressin, and oxytocin. Endocrinology. 116: 723727.
  • 50
    Plotsky P, Otto S, Sapolsky R. (1986). Inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation by delayed glucocorticoid feedback. Endocrinology. 119: 11261130.
  • 51
    Plotsky P, Bruhn T, Vale W. (1985). Evidence for multifactor regulation of the adrenocorticotropin secretory response to hemodynamic stimuli. Endocrinology. 116: 633639.
  • 52
    Whitnall M. (1990). Subpopulations of corticotropin-releasing hormone neurosecretory cells distinguished by presence or absence of vasopressin: confirmation with multiple corticotropin-releasing hormone antisera. Neuroscience. 36: 201205.
  • 53
    Whitnall M. (1988). Distributions of pro-vasopressin expressing and pro-vasopressin deficient CRH neurons in the para ventricular hypothalamic nucleus of colchicine-treated normal and adrenalectomized rats. J Comp Neurol. 275: 1328.
  • 54
    Whitnall M. (1989). Stress selectively activates the vasopressin-containing subset of corticotropin-releasing hormone neurons. Neuroendocrinology. 50: 702707.
  • 55
    Page R. (1983). Directional pituitary blood flow: a microcinephotographic study. Endocrinology. 112: 157165.
  • 56
    Page R. (1982). Pituitary blood flow. Am J Physiol. 243: E427E442.
  • 57
    Bruhn T, Plotsky P, Vale W. (1984). Effect of paraventricular lesions on corticotropin-releasing factor-like immunoreactivity into the stalk-median eminence: studies on the adrenocorticotropin response to ether stress and exogenous CRF. Endocrinology 114: 57.
  • 58
    Fagin K, Wiener S, Dallman M. (1985). ACTH and corticosterone secretion in rats following removal of the neurointermediate lobe of the pituitary gland. Neuroendocrinology. 40: 352362.
  • 59
    Dohanics J, Kapocs G, Janaky T, Kiss J, Rappay G, Laszlo F, Makara G. (1986). Mechanism of restoration of ACTH release in rats with long-term lesions of the paraventricular nuclei. J Endocrinol. 111: 7582.
  • 60
    Raff H, Merrill D, Skelton M, Brownfield M, Crowley J. (1988). Control of adrenocorticotropin secretion and adrenocortical sensitivity in neurohypophysectomized conscious dogs: effects of acute and chronic vasopressin replacement. Endocrinology. 122: 14101418.
  • 61
    Recht L, Hoffman D, Haldar J, Silverman A, Zimmerman E. (1981). Vasopressin concentrations in hypophysial portal plasma: insignificant reduction following removal of the posterior pituitary gland. Neuroendocrinology. 33: 8890.
  • 62
    Dohanics J, Verbalis J. (1989). Hyponatremia-induced inhibition of magnocellular vasopressin secretion selectively impairs ACTH secretion in response to stress. Proc 71st Ann Meeting Endocr Soc, Seattle, Washington. Abstr. 1727
  • 63
    Gann D, Ward D, Carlson D. (1978). Neural control of ACTH: a homeostatic reflex. Recent Prog Horm Res. 34: 357400.
  • 64
    Swanson L, Sawchenko P. (1980). Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology. 31: 410417.
  • 65
    Sawchenko P, Swanson L. (1983). The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei. In: CrossB and LengG, eds. The neurohypophysis: structure, function and control. Progress in brain research, vol. 60: 1929. Elsevier, Amsterdam .
  • 66
    Feldman S, Saphier D. (1985). Role of neurotransmitters and electro-physiological changes in the hypothalamus related to central adrenocortical regulation. In: McKernsK, eds. Neuroendocrine correlates of stress, 3962. Plenum Press, New York .
  • 67
    Mor G, Saphier D, Feldman S. (1987). Neural pathways mediating the effects of afferent stimuli on paraventricular nucleus multiunit activity in freely-moving rats. J Neurosci Res. 17: 452458.
  • 68
    Tucker D, Saper C, Ruggiero D, Reis D. (1987). Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J Comp Neurol. 259: 591603.
  • 69
    Ward D, Lefcourt A, Gann D. (1980). Neurons in the dorsal rostral pons process information about changes in venous return and in arterial pressure. Brain Res. 181: 7588.
  • 70
    Contreras R, Beckstead R, Norgren R. (1982). An autoradiographic examination of the central distribution of the trigeminal, facial glosso-pharyngeal and vagus nerves in the rat. J Auton Nerv Syst. 6: 303322.
  • 71
    Sumal K, Blessing W, Joh T, Reis D, Pickel V. (1983). Synaptic interactions of vagal afferents and catecholaminergic neurons in the rat nucleus solitarius. Brain Res. 277: 3140.
  • 72
    Reis D. (1986). The Cl area of rostral ventrolateral medulla: role in tonic and reflex regulation of arterial pressure. In: MagroA, OsswaldW, ReisD and VanhoutteP, eds. Central and peripheral mechanisms of cardiovascular regulation, 487502. Plenum Press, New York .
  • 73
    Menetrey D, Basbaum A. (1987). Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol. 255: 439450.
  • 74
    Sawchenko P. (1983). Central connections of the sensory and motor nuclei of the vagus nerve. J Auton Nerv Syst. 9: 1326.
  • 75
    Norgren R. (1984). Central neural mechanisms of taste. In: Mount-castleV, ed. The nervous system: sensory processes, 10871124. American Physiological Society, Bethesda .
  • 76
    Swanson L, Sawchenko P. (1983). Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci. 6: 269324.
  • 77
    Liposits Z, Phelix C, Paull W. (1986). Adrenergic innervation of corticotropin-releasing factor (CRF)-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Histochemistry. 84: 201205.
  • 78
    Cunningham E, Sawchenko P. (1988). Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol. 274: 6076.
  • 79
    Mezey E, Reisine T, Brownstein M, Palkovits M, Axelrod J. (1984). β-adrenergic mechanism of insulin-induced adrenocorticotropin release from the anterior pituitary. Science. 226: 10851087.
  • 80
    Agnati L, Fuxe K, Yu Z-Y, Harfstrand A, Okret S, Wikstrom A-C, Goldstein M, Zoli M, Vale W, Gustafsson J-A. (1985). Morphometrical analysis of the distribution of Corticotropin releasing factor, glucocorticoid receptor and phenylethanolamine-N-methyltransferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat. Neurosci Lett. 54: 147152.
  • 81
    Zoli M, Agnati L, Fuxe K, Zini I, Pich E, Grimaldi R, Harfstrand A, Goldstein M, Wikstrom A, Gustafsson J. (1988). Morphometrical and microdensitometrical studies on phenylethanolamine-n-methyl-transferase-and neuropeptide Y-immunoreactive nerve terminals and on glucocorticoid receptor-immunoreactive nerve ceil nuclei in the paraventricular hypothalamic nucleus in adult and old male rats. Neuroscience. 26: 479492.
  • 82
    Sawchenko P, Swanson L, Grzanna R, Howe P, Bloom S, Polak J. (1985). Colocalization of neuropeptide Y immunoreactivity in brain-stem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol. 241: 138153.
  • 83
    Liposits Z, Sievrs L, Paull W. (1988). Neuropeptide Y - and ACTH-immunoreactive innervation of corticotropin releasing factor (CRF)-synthesizing neurons in the hypothalamus of the rat. Histochemistry. 88: 227234.
  • 84
    Jones M, Gillham B, Campbell E, Al-Taher A, Chuang T, DiSciullo A. (1988). Pharmacology of neural pathways affecting CRH secretion. In: GanongW, DallmanM and RobertsJ, eds. The hypothalamic-pituitary-adrenal axis revisited, vol. 512: 162175. New York Academy of Sciences, New York .
  • 85
    Nicholson S, Adrian T, Gillham B, Jones M, Bloom S. (1984). Effect of hypothalamic neuropeptides on corticotrophin release from quarters of rat anterior pituitary gland in vitro. J Endocrinol. 100: 219226.
  • 86
    Jones M, Gillham B, DiRenzo G, Beckford U, Holmes M. (1981). Neural control of corticotrophin secretion. Front Horm Res. 8: 1243.
  • 87
    DiRenzo G, Gillham B, Holmes M, Jones M. (1979). The effect of pretreatment with intraventricular 6-hydroxydopamine on hypothalamo-pituitary-adrenocortical function in the rat. J Physiol. 293: 5051P.
  • 88
    Jones M, Hillhouse E. (1977). Neurotransmitter regulation of corticotropin-releasing factor in vitro. Ann NY Acad Sci. 297: 536560.
  • 89
    Jones M, Hillhouse E, Burden J. (1976). Effect of various putative neurotransmitters on the secretion of corticotrophin-releasing hormone from the rat hypothalamus in vitro–-a model of the neurotransmitters involved. J Endocrinol. 69: 110.
  • 90
    Hillhouse E, Burden J, Jones M. (1975). The effect of various putative neurotransmitters on the release of corticotrophin-releasing hormone from the hypothalamus of the rat in vitro. I. The effect of acetylcholine and noradrenaline. Neuroendocrinology. 17: 111.
  • 91
    Plotsky P, Bruhn T, Otto S. (1985). Central modulation of immunore-active arginine vasopressin and oxytocin secretion into the hypophysial-portal circulation by corticotropin-releasing factor. Endocrinology. 116: 16691671.
  • 92
    Plotsky P. (1987). Opioid inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation of rats. Regul Pept. 16: 235242.
  • 93
    Plotsky P. (1987). Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology. 121: 924930.
  • 94
    Plotsky P, Otto S, Sutton S. (1987). Neurotransmitter modulation of corticotropin releasing factor secretion into the hypophysial-portal circulation. Life Sci. 41: 13111317.
  • 95
    Plotsky P, Sutton S, Bruhn T, Ferguson A. (1988). Analysis of the role of angiotensin II in mediation of adrenocorticotropin secretion. Endocrinology. 122: 538545.
  • 96
    Sutton S, Kjaer A, Vale W, Plotsky P. (1990). Modulation of hypothalamic CRF-41 by activin-A. Soc. Neurosci Abstr. Abstr. 41.6
  • 97
    Sutton S, Toyama T, Sarkar D, Plotsky P. Analysis of neuropeptide Y (NPY) action in regulation of LH secretion. Proc 5th Int Symp on Psychoneuroendocrinology in Reproduction, Rome , Italy . (In press).
  • 98
    Plotsky P, Cunningham E, Widmaier E. (1989). Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev. 10: 437458.
  • 99
    Buckingham J, Hodges J. (1979). Hypothalamic receptors influencing the secretion of corticotrophin-releasing hormone in the rat. J Physiol (Lond). 290: 421431.
  • 100
    Ganong W. (1980). Neurotransmitters and pituitary function: regulation of ACTH secretion. Fed Proc. 39: 29232930.
  • 101
    Mezey E, Kiss J, Skirboll L, Goldstein M, Axelrod J. (1984). Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurons by depletion of hypothalamic adrenaline. Nature. 310: 140141.
  • 102
    Feldman S, Melamed E, Conforti N, Weidenfeld J. (1984). Inhibition in corticotrophin and corticosterone secretion following photic stimulation in rats with 6-hydroxydopamine injection into the medial forebrain bundle. J Neurosci Res. 12: 8792.
  • 103
    Krieger H, Krieger D. (1970). Chemical stimulation of the brain: effect on adrenal corticoid release. Am J Physiol. 218: 16321641.
  • 104
    Smythe G, Bradshaw J, Vining R. (1983). Hypothalamic monoamine control of stress-induced adrenocorticotropin release in the rat. Endocrinology. 113: 10621071.
  • 105
    Day T, Randle J, Renaud L. (1985). Opposing α-and β-adrenergic mechanisms mediate dose-dependent actions of noradrenaline on supraoptic vasopressin neurons in vivo. Brain Res. 358: 171179.
  • 106
    Szafarczyk A, Malaval F, Laurent A, Gibaud R, Assenmacher I. (1987). Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology. 121: 883892.
  • 107
    Guillaume V, Conte-Devolx B, Szafarczyk A, Malaval F, Pares-Herbute N, Grino M, Alonso G, Assenmacher I, Oliver C. (1987). The corticotropin-releasing factor release in rat hypophysial portal blood is mediated by brain catecholamines. Neuroendocrinology. 46: 143146.
  • 108
    Al-Damluji S, Perry L, Tomlin S, Bouloux P, Grossman A, Rees L, Besser G. (1987). Alpha-adrenergic stimulation of corticotropin secretion by a specific central mechanism in man. Neuroendocrinology. 45: 6876.
  • 109
    Al-Damluji S. (1988). Adrenergic mechanisms in the control of corticotrophin secretion. J Endocrinol. 119: 514.
  • 110
    Saphier D. (1990). Catecholaminergic projections to tuberoinfundibular neurones of the paraventricular nucleus: I. Effects of stimulation of A1, A2, A6 and C2 cell groups. Brain Res Bull. 23: 389395.
  • 111
    Sawchenko P, Arias C, Bittencourt J. (1990). Inhibin b-, somatostat-in-and enkephalin-immunoreactivities coexist in caudal medullary neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol. 291: 269280.
  • 112
    Sawchenko P, Pfeiffer S. (1989). Ultrastructural localization of neuropeptide Y - and galanin-immunoreactivity in the paraventricular nucleus of the hypothalamus in the rat. Brain Res. 474: 231245.
  • 113
    Levin M, Sawchenko P, Howe P, Polak J, Bloom S. (1987). The organization of galanin-immunoreactive inputs to the paraventricular nucleus with special reference to their relationship to catecholaminergic afferents. J Comp Neurol. 261: 562582.
  • 114
    Everitt B, Hokfelt T, Terenius L, Tatemoto K, Mutt V, Goldstein M. (1984). Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system in the rat. Neuroscience. 11: 443462.
  • 115
    Sawchenko P, Benoit R, Brown M. (1988). Somatostatin 28-immunoreactive inputs to the paraventricular and supraoptic nuclei: principal origin from non-aminergic neurons in the nucleus of the solitary tract. J Chem Neuroanat. 1: 8194.
  • 116
    Inoue T, Inui A, Okita M, Sakatani N, Oya M, Morioka H, Mizuno N, Oimomi M, Baba S. (1989). Effect of neuropeptide Y on the hypothalamic-pituitary-adrenal axis in the dog. Life Sci. 44: 10431051.
  • 117
    Haas D, George S. (1987). Neuropeptide Y administration acutely increases hypothalamic corticotropin-releasing factor immunoreactivity: lack of effect in other rat brain regions. Life Sci. 41: 27252731.
  • 118
    Perrin M, Haas Y, Porter J, Rivier J, Vale W. (1989). The gonadotropin-releasing hormone pituitary receptor interacts with a guanosine triphosphate-binding protein: differential effects of guanyl nucleotides on agonist and antagonist binding. Endocrinology. 124: 798804.
  • 119
    Albers H, Ottenweller J, Liou S, Lumpkin M, Anderson E. (1990). Neuropeptide Y in the hypothalamus: effect on corticosterone and single unit activity. Am J Physiol. 258: R376R382.
  • 120
    Haas D, George S. (1989). Neuropeptide Y-induced effects on hypothalamic corticotropin-releasing factor content and release are dependent on noradrenergic/adrenergic neurotransmission. Brain Res. 498: 333338.
  • 121
    Westlind AD, Unden A, Abens J, Andell S, Bartfai T. (1987). Neuropeptide Y receptors and the inhibition of adenylate cyclase in the human frontal and temporal cortex. Neurosci Lett. 74: 237242.
  • 122
    Motulsky H, Michel M. (1988). Neuropeptide Y mobilizes Ca2+ and inhibits adenylate cyclase in human erythroleukemia cells. Am J Physiol. 255: E880E885.
  • 123
    Ewald DA, Sternweis PC, Miller RJ. (1988). Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons. Proc Natl Acad Sci USA. 85: 36333637.
  • 124
    Harfstrand A, Fuxe K, Agnati L, Fredholm B. (1989). Reciprocal interactions between alpha 2-adrenoceptor agonist and neuropeptide Y binding sites in the nucleus tractus solitarius of the rat. A biochemical and autoradiographic analysis. J Neural Transm. 75: 8399.
  • 125
    Heilig M, Wahlestedt C, Widerlov E. (1988). Neuropeptide Y (NPY)-induced suppression of activity in the rat: evidence for NPY receptor heterogeneity and for interaction with alpha-adrenoceptors. Eur J Pharmacol. 157: 205213.
  • 126
    Haggblad J, Fredholm B. (1987). Adenosine and neuropeptide Y enhance al-adrenoceptor-induced accumulation of inositol phosphates and attenuate forskolin-induced accumulation of cyclic AMP in rat vas deferens. Neurosci Lett. 82: 211216.
  • 127
    Sawchenko P, Plotsky P, Vaughan J, Pfeiffer S, Cunningham E jr, Rivier J, Vale W. (1988). Inhibin β in central neural pathways involved in the control of oxytocin secretion. Nature. 334: 615617.
  • 128
    Meunier H, Rivier C, Evans R, Vale W. (1988). Gonadal and extragonadal expression of inhibin a, bA, and bB subunits in various tissues predicts diverse functions. Proc Natl Acad Sci USA. 85: 247251.
  • 129
    Mason A, Hayflick J, Ling N, Esch F, Ueno N, Ying S-Y, Guillemin R, Niall H, Seeburg P. (1985). Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-b. Nature. 318: 659663.
  • 130
    Gonzalez-Manchon C, Vale W. (1989). Activin-A, inhibin and TGF-β modulate growth of two gonadal cell lines. Endocrinology. 125: 16661672.
  • 131
    Billestrup N, Gonzalez-Manchon C, Potter E, Vale W. (1990). Inhibition of somatotroph growth and GH biosynthesis by activin in vitro. Mol Endocrinol. 4: 356362.
  • 132
    Plotsky P, Bruhn T, Vale W. (1984). Central modulation of immuno-reactive corticotropin-releasing factor secretion by arginine vasopressin. Endocrinology. 115: 16391641.
  • 133
    Dallman M, Jones M, Vernikos-Danellis J, Ganong W. (1972). Corticosteroid feedback control of ACTH secretion: rapid effects of bilateral adrenalectomy on plasma ACTH in the rat. Endocrinology. 91: 961968.
  • 134
    Hillhouse E, Jones M. (1976). Effect of bilateral adrenalectomy and corticosteroid therapy on the secretion of corticotropin-releasing factor activity from the hypothalamus of the rat in vitro. J Endocrinol. 71: 21.
  • 135
    Jones M, Hillhouse E, Burden J. (1977). Dynamics and mechanics of corticosteroid feedback at the hypothalamus and anterior pituitary gland. J Endocrinol. 73: 405417.
  • 136
    Nicholson S, Gillham B, Jones M. (1988). Influence of prolonged glucocorticoid treatment on intracellular mechanisms involved in ACTH secretion in the rat. J Mol Endocrinol. 1: 203212.
  • 137
    Reul J, DeKloet E. (1985). Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 117: 25052511.
  • 138
    DeKloet E, Reul J. (1987). Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology. 12: 83105.
  • 139
    Reul J, Bosch FVD, DeKloet E. (1987). Relative occupation of type I and type II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol. 115: 459467.
  • 140
    Bugnon C, Hadjiyiassemis M, Fellmann D, Cardot J. (1983). Reserpine-induced depletion of corticoliberin (CRF)-like immunoreactivity in the zona externa of the rat median eminence. Brain Res. 275: 198201.
  • 141
    McEwen B. (1979). Influences of adrenocortical hormones on pituitary and brain function. In: BaxterJ and RousseauG, eds. Glucocorticoid hormone action, vol. 12: 467492. Springer-Verlag, Berlin , Heidelberg .
  • 142
    Stumpf W, Sar M. (1979). Glucocorticosteroid and mineralocorticosteroid hormone target sites in the brain: autoradiographic studies with corticosterone, aldosterone and dexamethasone. In: JonesM, DallmanM, GillmanB and ChattapadhyanS, eds. Interactions within the brain-pituitary-adrenocortical system, 137147. Academic Press, New York .
  • 143
    Arriza J, Simmerly R, Swanson L, Evans R. (1988). The neuronal mineralocorticoid receptor as a mediator of the glucocorticoid response. Neuron. 1: 887900.
  • 144
    Reul J, Pearce P, Funder J, Krozowski Z. (1989). Type I and Type II corticosteroid receptor gene expression in the rat: effect of adrenalectomy and dexamethasone administration. Mol Endocrinol. 3: 16741680.
  • 145
    Fuxe K, Wikstrom A-C, Okret S, Agnati L, Harfstrand A, Yu Z-Y, Granholm L, Zoli M, Vale W, Gustafsson J-A. (1985). Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel-and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinology. 117: 18031812.
  • 146
    Uht R, McKelvy J, Harrison R, Bohn M. (1988). Demonstration of glucocorticoid receptor-like immunoreactivity in glucocorticoid-sensitive vasopressin and corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus. J Neurosci Res. 19: 405411.
  • 147
    Sawchenko P, Swanson L, Vale W. (1984). Coexpression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci USA. 81: 18831887.
  • 148
    Merchenthaler I, Vigh S, Petrusz P, Schally A. (1983). The paraventricular-infundibular corticotropin releasing factor (CRF)-pathway as revealed by immunocytochemistry in long-term hypophysectomized or adrenalectomized rats. Regul Pept. 5: 295305.
  • 149
    Kiss J, Mezey E, Skirboll L. (1984). Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc Natl Acad Sci USA. 81: 18541858.
  • 150
    Plotsky P, Sawchenko P. (1987). Hypophysial-portal plasma levels, median eminence content, and immunohistochemical staining of corticotropin-releasing factor, arginine vasopressin, and oxytocin after pharmacological adrenalectomy. Endocrinology. 120: 13611369.
  • 151
    Jingami H, Matsukura S, Numa S, Imura H. (1985). Effects of adrenalectomy and dexamethasone administration on the level of prepro-corticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin/β-lipotropin precursor mRNA in the pituitary in rats. Endocrinology. 117: 13141320.
  • 152
    Wolfson B, Manning R, Davis L, Arentzen R jr. (1985). Co-localization of corticotropin releasing factor and vasopressin mRNA in neurons after adrenalectomy. Nature. 315: 5961.
  • 153
    Young W, Mezey E, Siegel R. (1986). Quantitative in situ hybridiation histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci Lett. 70: 198203.
  • 154
    Beyer H, Malta S, Sharp B. (1988). Regulation of the messenger ribonucleic acid for corticotropin-releasing factor in the paraventricular nucleus and other brain sites of the rat. Endocrinology 123: 2117.
  • 155
    Swanson L, Simmons D. (1989). Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. J Comp Neurol. 285: 413435.
  • 156
    Suda T, Tomori N, Tozawa F, Mouri T, Demura H, Shizume K. (1983). Effects of bilateral adrenalectomy on immunoreactive corticotropin-releasing factor in the rat median eminence and intermediate-posterior pituitary. Endocrinology. 113: 11821184.
  • 157
    Suda T, Tomori N, Tozawa F, Mouri T, Demura H, Shizume K. (1984). Effect of dexamethasone on immunoreactive corticotropin-releasing factor in the rat median eminence and intermediate-posterior pituitary. Endocrinology. 114: 851854.
  • 158
    Dallman M, Makara G, Roberts J, Levin N, Blum M. (1985). Corticotrope response to removal of releasing factors and corticosteroids in vivo. Endocrinology. 117: 21902197.
  • 159
    Holmes M, Antoni F, Catt K, Aguilera G. (1986). Predominant release of vasopressin vs. corticotropin releasing factor from the isolated median eminence after adrenalectomy. Neuroendocrinology. 43: 245251.
  • 160
    Plotsky P, Vale W. (1984). Hemorrhage-induced secretion of corticotropin-releasing factor-like immunoreactivity into the rat hypophysial portal circulation and its inhibition by glucocorticoids. Endocrinology. 114: 164169.
  • 161
    Plotsky P, Otto S, Sapolsky R. (1986). Inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation by delayed glucocorticoid feedback. Endocrinology. 119: 11261130.
  • 162
    Akana S, Cascio C, Shinsako J, Dallman M. (1985). Corticosterone: narrow range required for normal body and thymus weight and ACTH. Am J Physiol. 249: R527R532.
  • 163
    Sapolsky R, Armanini M, Sutton S, Plotsky P. (1989). Elevation of hypophysial-portal concentrations of adrenocorticotropin secretagog-ues after fornix transection. Endocrinology. 125: 28812887.
  • 164
    Sapolsky R, Armanini M, Packan D, Sutton S, Plotsky P. (1990). Glucocorticoid feedback inhibition of adrenocorticotropic hormone secretagogue release. Neuroendocrinology. 51: 328336.
  • 165
    Dallman M, Levin N, Cascio C, Akana S, Jacobson L, Kuhn R. (1989). Pharmacological evidence that the inhibition of diurnal adreno-corticotropin secretion by corticosteroids is mediated via type I cortico-sterone-preferring receptors. Endocrinology. 124: 28442850.
  • 166
    Akana S, Cascio C, Du J-Z, Levin N, Dallman M. (1986). Reset of feedback in the adrenocortical system: an apparent shift in sensitivity of adrenocorticolropin to inhibition by corticosterone between morning and evening. Endocrinology. 119: 23252332.
  • 167
    Kovacs K, Makara G. (1988). Corticosterone and dexamethasone act at different brain sites to inhibit adrenalectomy-induced adrenocoricotropin hypersection. Brain Res. 474: 205210.
  • 168
    Ratka A, Sutanto W, Bloemers M, De Kloet E. (1989). On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology. 50: 117123.
  • 169
    Sapolsky R, Plotsky P. (1990). Hypercortisolism and its possible neural bases. Biol Psychiatry. 27: 937952.
  • 170
    Canny B. (1990). Hippocampal glucocorticoid receptors and the regulation of ACTH secretion. Mol Cell Endocrinol. 71: C35C38.
  • 171
    Spencer R, Young E, Choo P, McEwen B. (1990). Adrenal steroid type I and type II receptor binding: estimates of in vivo receptor number, occupancy, and activation with varying level of steroid. Brain Res. 514: 3748.
  • 172
    Lilly M, Engeland W, Gann D. (1983). Responses of cortisol secretion to repeated hemorrhage in the anesthetized dog. Endocrinology. 112: 681688.
  • 173
    Lilly M, DeMaria E, Bruhn T, Gann D. (1988). Potentiated response to paired hemorrhage: role of angiotensin and vasopressin. Am J Physiol. 257: R118R126.
  • 174
    Thrivikraman K, Plotsky P. (1990). Hemorrhage-induced potentiation of pituitary-adrenocortical responses in awake rats. Soc. Neurosci Abstr. Abstr. 195.6
  • 175
    Laufer R, Changeux J-P. (1989). Activity-dependent regulation of gene expression in muscle and neuronal cells. Mol Neurobiol. 3: 153.
  • 176
    Frim D, Robinson B, Pasieka K, Mazjoub J. (1990). Differential regulation of corticotropin-releasing hormone mRNA in rat brain. Am J Physiol. 258: E686E692.
  • 177
    Herman J, Schaffer M-H, Young E, Thompson R, Douglass J, Akil H, Watson S. (1989). Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J Neurosci. 9: 30723082.
  • 178
    Seasholtz A, Thompson R, Douglass J, Herbert E. (1988). Identification of a cyclic adenosine monophosphate-responsive element in the rat corticotropin-releasing hormone gene. Mol Endocrinol. 2: 13111315.
  • 179
    Adler G, Smas C, Fiandaca M, Frim D, Majzoub J. (1990). Regulated expression of the human corticotropin releasing hormone gene by cyclic AMP. Mol Cell Endocrinol. 70: 165174.
  • 180
    Sternberg E, Bernardini R, Cologero A, Chrousos G, Gold P, Wilder R. (1989). A central nervous system defect in biosynthesis of corticotropin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc Natl Acad Sci USA. 86: 47714775.
  • 181
    Herman J, Schaffer M-H, Sladek C, Day R, Young E, Akil H, Watson S. (1989). Chronic electroconvulsive shock treatment elicits up-regulation of CRF and AVP mRNA in select populations of neuroendocrine neurons. Brain Res. 501: 235246.
  • 182
    Harbuz M, Lightman S. (1989). Responses of hypothalamic and pituitary mRNA to physical and psychological stress in the rat. J Endocrinol. 122: 705711.
  • 183
    Imaki T, Nahon J-L, Rivier C, Sawchenko P, Vale W. Differential regulation of corticotropin-releasing factor mRNA in rat brain cell types by glucocorticoids and stress. J Neurosci. (In press).
  • 184
    Suda T, Tozawa F, Yamada M, Ushiyama T, Tomori N, Sumitomo T, Nakagami Y, Demura H, Shizume K. (1988). Insulin-induced hypoglycemia increases corticotropin-releasing factor messenger ribo-nuclei acid levels in rat hypothalamus. Endocrinology. 123: 13711375.
  • 185
    Sawchenko P. (1988). Effects of catecholamine-depleting medullary knife cuts on corticotropin-releasing factor and vasopressin immuno-reactivity in the hypothalamus of normal and steroid-manipulated rats. Neuroendocrinology. 48: 459470.
  • 186
    Kingston R, Baldwin A, Sharp P. (1985). Transcription control by oncogenes. Cell. 41: 35.
  • 187
    Lech K, Anderson K, Brent R. (1988). DNA-bound fos proteins activate transcription in yeast. Cell. 52: 179184.
  • 188
    Sassone-Corsi P, Sisson J, Verma I. (1988). Transcriptional autoregulation of the proto-oncogene Fos. Nature 334: 314.
  • 189
    Sagar S, Sharp F, Curran T. (1988). Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science. 240: 13281331.
  • 190
    Sheng M, Greenberg M. (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 4: 477485.
  • 191
    Curran T, Franza B. (1988). Fos and Jun: the AP-1 connection. Cell. 55: 395397.
  • 192
    Chiu R, Boyle W, Meek J, Smeal T, Hunter T, Karin M. (1988). The c-Fos protein interacts with c-Jun/AP-1 responsive genes. Cell. 54: 541552.
  • 193
    Rauscher IFJ, Sambucetti L, Curran T, Distel R, Spiegelman B. (1988). Common DNA binding site for Fos protein complexes and transcription factor AP-1. Cell. 51: 471480.
  • 194
    Curran T, Morgan J. (1986). Barium modulates c-fos expression and post-translational modification. Proc Natl Acad Sci USA. 83: 85218524.
  • 195
    Sassone-Corsi P, Visvader J, Ferland L, Mellon P, Verma I. (1988). Induction of proto-oncogene Fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev. 2: 15291538.
  • 196
    Gilman M. (1988). The c-fos serum response element responds to protein kinase C-dependent and -independent signals but not to cyclic AMP. Genes Dev. 2: 394402.
  • 197
    White J, Gall C. (1987). Differential regulation of neuropeptides and proto-oncogene mRNA content in the hippocampus following recurrent seizures. Mol Brain Res. 3: 2129.
  • 198
    Morgan J, Cohen D, Hampstead J, Curran T. (1987). Mapping patterns of c-fos expression of the central nervous system after seizure. Science 237: 192.
  • 199
    Sagar S, Sharp F. (1988). Dehydration induces fos immunostaining in hypothalamic magnocellular neurons. Soc. Neurosci Abstr. Part 1. Abstr. 126.10
  • 200
    Jacobson L, Sharp F, Dallman M. (1990). Induction of fos-like immunoreactivity in hypothalamic corticotropin-releasing factor neurons after adrenalectomy in the rat. Endocrinology. 126: 17091719.
  • 201
    Gubits R, Smith T, Fairhurst J, Yu H. (1989). Adrenergic receptors mediate changes in c-fos mRNA levels in brain. Mol Brain Res. 6: 3945.
  • 202
    Hunt S, Pini A, Evans G. (1987). Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328: 632.
  • 203
    Sharp F, Griffith J, Gonzalez M, Sagar S. (1989). Trigeminal nerve section induces fos-like immunoreactivity (FLI) in brainstem and decreases FLI in sensory cortex. Mol Brain Res. 6: 217.
  • 204
    Sharp F, Gonzalez M, Sharp J, Sagar S. (1989). c-fos Expression and [14C]2-deoxyglucose uptake in caudal cerebellum during motor/ sensory cortex stimulation in the rat. J Comp Neurol. 284: 621.
  • 205
    Rea M. (1989). Light increases Fos-related protein immunoreactivity in the rat suprachiasmatic nuclei. Brain Res Bull. 23: 577581.