• dietary fat;
  • oestradiol;
  • progesterone;
  • hypothalamus;
  • galanin;
  • enkephalin;
  • food intake

Puberty is a time of rapid change, including a marked increase in fat consumption and body fat accrual, particularly in females. The mechanisms underlying these changes are unknown. Building on the results obtained in adult rats, the present study in pubertal rats focused on the orexigenic peptides, galanin (GAL) and enkephalin (ENK), in the paraventricular nucleus (PVN) and medial preoptic nucleus (MPN), which are known to be responsive to female steroids and have a role in both energy balance and reproductive function. The present study examined female rats maintained on pure macronutrient diets from before weaning (day 15) to day 70. After an initial burst in protein intake (days 21–35), rats showed an increase, specifically in preference for fat, from 15% to 30%. In rats examined at different ages before (day 30) and after (days 45 and 60) puberty, this rise in fat intake was associated with a marked increase, from days 30–45, in levels of oestradiol and progesterone and in GAL and ENK mRNA or peptide levels, specifically in the PVN and MPN, but not other hypothalamic areas examined. This positive relationship with increased fat intake, steroids and peptides across ages was also observed when comparing pubertal rats that naturally preferred fat (> 25% of total diet) with those consuming little fat (< 15%) or rats that reached puberty at an early age (days 30–34) with those that were late (days 37–40). These rats with early puberty onset exhibited a strong fat preference 3–4 days before vaginal opening, which was positively related to steroid levels, GAL, fat intake and body fat accrual after puberty. These findings suggest that, in addition to providing a signal for puberty onset, early fat ingestion acting through mechanisms involving the steroids and orexigenic peptides may be related to long-term patterns of eating and body weight regulation.