SEARCH

SEARCH BY CITATION

Keywords:

  • sleep inertia;
  • circadian;
  • alertness;
  • performance;
  • model;
  • REM sleep;
  • awakening

Summary

Alertness and performance on a wide variety of tasks are impaired immediately upon waking from sleep due to sleep inertia, which has been found to dissipate in an asymptotic manner following waketime. It has been suggested that behavioural or environmental factors, as well as sleep stage at awakening, may affect the severity of sleep inertia. In order to determine the time course of sleep inertia dissipation under normal entrained conditions, subjective alertness and cognitive throughput were measured during the first 4 h after habitual waketime from a full 8-h sleep episode on 3 consecutive days. We investigated whether this time course was affected by either sleep stage at awakening or behavioural/environmental factors. Sleep inertia dissipated in an asymptotic manner and took 2–4 h to near the asymptote. Saturating exponential functions fitted the sleep inertia data well, with time constants of 0.67 h for subjective alertness and 1.17 h for cognitive performance. Most awakenings occurred out of stage rapid eye movement (REM), 2 or 1 sleep, and no effect of sleep stage at awakening on either the severity of sleep inertia or the time course of its dissipation could be detected. Subjective alertness and cognitive throughput were significantly impaired upon awakening regardless of whether subjects got out of bed, ate breakfast, showered and were exposed to ordinary indoor room light (≈150 lux) or whether subjects participated in a constant routine (CR) protocol in which they remained in bed, ate small hourly snacks and were exposed to very dim light (10–15 lux). These findings allow for the refinement of models of alertness and performance, and have important implications for the scheduling of work immediately upon awakening in many occupational settings.