SEARCH

SEARCH BY CITATION

References

  • Attwell, D. and Laughlin, S. B. An energy budget for signaling in the gray matter of the brain. J. Cereb. Blood Flow Metab., 2001, 21: 11331145.
  • Bach, V., Telliez, F. and Libert, J.-P. The interaction between sleep and thermoregulation in adults and neonates. Sleep Med. Rev., 2002, 6: 481492.
  • Clancy, B., Darlington, R. B. and Finlay, B. L. Translating developmental time across mammalian species. Neuroscience, 2001, 105: 717.
  • Crick, F. and Mitchison, G. The function of dream sleep. Nature, 1983, 304: 111114.
  • Czikk, M. J., Totten, S., Homan, J. H., White, S. E. and Richardson, B. S. Sagittal sinus blood flow in the ovine fetus as a continuous measure of cerebral blood flow: relationship to behavioural state activity. Dev. Brain Res., 2001, 131: 103111.
  • Fagioli, I. and Salzarulo, P. Sleep states development in the first year of life assessed through 24-h recordings. Early Hum. Dev., 1982, 6: 215228.
  • Frank, M. G. and Heller, H. C. The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J. Sleep Res., 2003, 12: 2534.
  • Franzini, C. Cardiovascular physiology: the peripheral circulation. In: M. H.Kryger, T.Roth and W. C.Dement (Eds) Principles and Practice of Sleep Medicine. Elsevier Saunders, Philadelphia, 2005: 203212.
  • Grant, D. A., Franzini, C., Wild, J. and Walker, A. M. Continuous measurement of blood flow in the superior sagittal sinus of the lamb. Am. J. Physiol. Regul. Integr. Comp. Physiol., 1995, 269: R274R279.
  • Grant, D. A., Franzini, C., Wild, J., Eede, K. J. and Walker, A. M. Autoregulation of the cerebral circulation during sleep in newborn lambs. J. Physiol., 2005, 564: 923930.
  • Ito, H., Ibaraki, M., Kanno, I., Fukuda, H. and Miura, S. Changes in cerebral blood flow and cerebral oxygen metabolism during neural activation measured by positron emission tomography: comparison with blood oxygenation level-dependent contrast measured by functional magnetic resonance imaging. J. Cereb. Blood Flow Metab., 2005, 25: 371377.
  • Jain, N., Diener, P. S., Coq, J. O. and Kaas, J. H. Patterned activity via spinal dorsal quadrant inputs is necessary for the formation of organized somatosensory maps. J. Neurosci., 2003, 23: 1032110330.
  • Jenni, O. G., Borbely, A. A. and Achermann, P. Development of the nocturnal sleep electroencephalogram in human infants. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286: R528R538.
  • Jouvet, D. and Valatx, J. L. Etude polygraphique du sommeil chez l'agneau. C. R. Soc. Biol. Fil., 1962, 156: 14111414.
  • Lenzi, P., Zoccoli, G., Walker, A. M. and Franzini, C. Cerebral circulation in REM sleep: is oxygen a main regulating factor? Sleep Res. Online, 2000, 3: 7785.
  • Madsen, P. L., Schmidt, J. F., Wildschiodtz, G., Friberg, L., Holm, S., Vorstrup, S. and Lassen, N. A. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J. Appl. Physiol., 1991, 70: 25972601.
  • Maquet, P. Functional neuroimaging of normal human sleep by positron emission tomography. J. Sleep Res., 2000, 9: 207231.
  • Mirmiran, M. The function of fetal/neonatal rapid eye movement sleep. Behav. Brain Res., 1995, 69: 1322.
  • Peirano, P., Algarin, C. and Uauy, R. Sleep–wake states and their regulatory mechanisms throughout early human development. J. Pediatr., 2003, 143: S70S79.
  • Richardson, B. S., Carmichael, L., Homan, J. and Gagnon, R. Cerebral oxygen metabolism in lambs during perinatal period: relationship to electrocortical state. Am. J. Physiol. Regul. Integr. Comp. Physiol., 1989, 257: R1251R1257.
  • Roffwarg, H. P., Muzio, J. N. and Dement, W. C. Ontogenetic development of the human sleep–dream cycle. Science, 1966, 152: 604619.
  • Rosenberg, A. A., Jones, M. D. J., Traystman, R., Simmons, M. A. and Molteni, R. A. Response of cerebral blood flow to changes in PCO2 in fetal, newborn, and adult sheep. Am. J. Physiol. Heart Circ. Physiol., 1982, 242: H862H866.
  • Shaffery, J. P., Sinton, C. M., Bissette, G., Roffwarg, H. P. and Marks, G. A. Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats. Neuroscience, 2002, 110: 431443.
  • Silvani, A., Bojic, T., Franzini, C., Lenzi, P., Walker, A. M., Grant, D. A., Wild, J. and Zoccoli, G. Sleep-related changes in the regulation of cerebral blood flow in newborn lambs. Sleep, 2004, 27: 3641.
  • Silvani, A., Asti, V., Bojic, T., Ferrari, V., Franzini, C., Lenzi, P., Grant, D. A., Walker, A. M. and Zoccoli, G. Sleep-dependent changes in the coupling between heart period and arterial pressure in newborn lambs. Pediatr. Res., 2005, 57: 108114.
  • Steriade, M. Brain activation, then (1949) and now: coherent fast rhythms in corticothalamic networks. Arch. Ital. Biol., 1995, 134: 520.
  • Szeto, H. H. and Hinman, D. J. Prenatal development of sleep–wake patterns in sheep. Sleep, 1985, 8: 347355.
  • Tagawa, Y., Kanold, P. O., Majdan, M. and Shatz, C. J. Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nat. Neurosci., 2005, 8: 380388.
  • Zoccoli, G., Grant, D. A., Wild, J. and Walker, A. M. Nitric oxide inhibition abolishes sleep–wake differences in cerebral circulation. Am. J. Physiol. Heart Circ. Physiol., 2001, 280: H2598H2606.