SEARCH

SEARCH BY CITATION

References

  • Beck, A. T. Beck Depression Inventory. The Psychological Corporation, San Antonio, TX, 1987.
  • Bliwise, D. L. Normal aging. In: M. H.Kryger, T.Roth and W. C.Dement (Eds) Principles and Practice of Sleep Medicine. W.B. Saunders Company, Philadelphia, 2000: 2438.
  • Bodizs, R., Kis, T., Lazar, A. S., Havran, L., Rigo, P., Clemens, Z. and Halasz, P. Prediction of general mental ability based on neural oscillation measures of sleep. J. Sleep Res., 2005, 14: 285292.
  • Clemens, Z., Fabo, D. and Halasz, P. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience, 2005, 132: 529535.
  • Clemens, Z., Fabo, D. and Halasz, P. Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles. Neurosci. Lett., 2006, 403: 5256.
  • Crowley, K., Trinder, J., Kim, Y., Carrington, M. and Colrain, I. M. The effects of normal aging on sleep spindle and K-complex production. Clin. Neurophysiol., 2002, 113: 16151622.
  • Destexhe, A. and Sejnowski, T. J. Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations. Oxford University Press, Oxford, 2001.
  • Dijk, D.-J., Roth, C., Landolt, H. P., Werth, E., Aeppli, M., Achermann, P. and Borbely, A. A. Melatonin effect on daytime sleep in men: suppression of EEG low frequency activity and enhancement of spindle frequency activity. Neurosci. Lett., 1995, 201: 1316.
  • Douglass, A. B., Bornstein, R. A., Nino-Murcia, G., Keenan, S., Laughton, M., Zarcone, V.P., Guilleminault, C. and Dement, W. C. The Sleep Disorders Questionnaire 1: creation and multivariate structure of the SDQ. Sleep, 1994, 17: 160167.
  • Fogel, S. M. and Smith, C. T. Learning-dependent changes in sleep spindles and Stage 2 sleep. J. Sleep Res., 2006, 15: 250255.
  • Fogel, S.M., Nader, R., Cote, K.A. and Smith, C.T. Sleep spindles and learning potential. Behav. Neurosci., 2007a, 121: 110.
  • Fogel, S. M., Smith, C. T. and Cote, K. A. Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems. Beh. Brain Res., 2007b, 180: 4861.
  • Forest, G., Poulin, J., Daoust, A.-M., Lussier, I., Stip, E. and Godbout, R. Attention and non-REM sleep in neuroleptic-naive persons with schizophrenia and control participants. Psychiatry Res., 2007, 149: 3340.
  • Gaillard, J. M. and Blois, R. Spindle density in sleep of normal subjects. Sleep, 1981, 4: 385391.
  • Gais, S., Moelle, M., Helms, K. and Born, J. Learning-dependent increases in sleep spindle density. J. Neurosci., 2002, 22: 68306834.
  • Guazzelli, M., Feinberg, I., Aminoff, M., Fein, G., Floyd, T.C. and Maggini, C. Sleep spindles in normal elderly: comparison with young adult patterns and relation to nocturnal awakening, cognitive function and brain atrophy. Electroencephalogr. Clin. Neurophysiol., 1986, 63: 526539.
  • Gutman, G. M. The effects of age and extraversion on pursuit rotor reminiscence. J. Gerontol., 1965, 20: 346350.
  • Huber, R., Ghilardi, M. F., Massimini, M. and Tononi, G. Local sleep and learning. Nature, 2004, 430: 7881.
  • Jackson, D. N. Multidimensional Aptitude Battery-II. Sigma Assessment Systems, Inc., Port Huron, MI, 1998.
  • Landolt, H. P., Dijk, D.-J., Achermann, P. and Borbely, A. A. Effect of age on the sleep EEG: slow-wave activity and spindle frequency activity in young and middle-aged men. Brain Res., 1996, 738: 205212.
  • Marshall, L., Molle, M., Hallschmid, M. and Born, J. Transcranial direct current stimulation during sleep improves declarative memory. J. Neurosci., 2004, 24: 99859992.
  • Milner, C. E., Fogel, S. M. and Cote, K. A. Habitual napping moderates motor performance improvements following a short daytime nap. Biol. Psychol., 2006, 73: 141156.
  • Nader, R. and Smith, C. A role for stage 2 sleep in memory processing. In: P.Maquet, C.Smith and R.Stickgold (Eds) Sleep and Brain Plasticity. Oxford University Press, Oxford, 2003: 8798.
  • Nicolas, A., Petit, D., Rompre, S. and Montplaisir, J. Sleep spindle characteristics in healthy subjects of different age groups. Clin. Neurophysiol., 2001, 112: 521527.
  • Nishida, M. and Walker, M. P. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS ONE, 2, 2007, 4: e341.
  • Ohayon, M. M., Carskadon, M. A., Guilleminault, C. and Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep, 2004, 27: 12551273.
  • Peters, K. R., Smith, V. and Smith, C. T. Changes in sleep architecture following motor learning depend on initial skill level. J. Cogn. Neurosci., 2007, 19: 817829.
  • Plihal, W. and Born, J. Effects of early and late nocturnal sleep on declarative and procedural memory. J. Cogn. Neurosci., 1997, 9: 534547.
  • Principe, J. C. and Smith, J. R. Sleep spindle characteristics as a function of age. Sleep, 1982, 5: 7384.
  • Raz, N., Williamson, A., Gunning-Dixon, F., Head, D. and Acker, J. D. Neuroanatomical and cognitive correlates of adult age differences in acquisition of a perceptual-motor skill. Microsc. Res. Tech., 2000, 51: 8593.
  • Rechtschaffen, A. and Kales, A. A Manual of Standardized Terminology, Techniques and Scoring Systems of Human Subjects. Brain Information Service/Brain Research Institute, Los Angeles, 1968.
  • Schabus, M., Gruber, G., Parapatics, S., Sauter, C., Klosch, G., Anderer, P., Klimesch, W., Saletu, B. and Zeitlhofer, J. Sleep spindles and their significance for declarative memory consolidation. Sleep, 2004, 27: 14791485.
  • Schabus, M., Hodlmoser, K., Gruber, G., Sauter, C., Anderer, P., Klosch, G., Parapatics, S., Saletu, B., Klimesch, W. and Zeitlhofer, J. Sleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilities. Eur. J. Neurosci., 2006, 23: 17381746.
  • Smith, C. Sleep states, memory processes and synaptic plasticity. Behav. Brain Res., 1996, 78: 4956.
  • Smith, C. Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med. Rev., 2001, 5: 491506.
  • Smith, C. and MacNeill, C. Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. J. Sleep Res., 1994, 3: 206213.
  • Smith, C. and Smith, D. Ingestion of ethanol just prior to sleep onset impairs memory for procedural but not declarative tasks. Sleep, 2003, 26: 185191.
  • Smith, C. T, Nixon, M. R. and Nader, R. S. Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learn Mem., 2004, 11: 714719.
  • Steriade, M. Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci., 1999, 22: 337345.
  • Tabachnick, B. G. and Fidell, L.S. Using Multivariate Statistics. Allyn & Bacon, Needham Heights, MA, 2001 (4th edition).
  • Thumin, F. J. Reminiscence as a function of chonological and mental age. J. Gerontol., 1962, 17: 392396.
  • Walker, M. P. and Stickgold, R. Sleep, memory, and plasticity. Annu. Rev. Psychol., 2006, 57: 139166.
  • Wauquier, A. Aging and changes in phasic events during sleep. Physiol. Behav., 1993, 54: 803806.
  • Werth, E., Achermann, P., Dijk, D. J. and Borbely, A. A. Spindle frequency activity in the sleep EEG: individual differences and topographic distribution. Electroencephalogr. Clin. Neurophysiol., 1997, 103: 535542.
  • Wright, B. M. and Payne, R. B. Effects of aging on sex differences in psychomotor reminiscence and tracking proficiency. J. Gerontol., 1985, 40: 179184.
  • Zeitlhofer, J., Gruber, G., Anderer, P., Asenbaum, S., Schimicek, P. and Saletu, B. Topographic distribution of sleep spindles in young healthy subjects. J. Sleep Res., 1997, 6: 149155.