SEARCH

SEARCH BY CITATION

References

  • Amzica, F. and Steriade, M. Short- and long-range neuronal synchronization of the slow (<1 Hz) cortical oscillation. J. Neurophysiol., 1995, 73: 2038.
  • Anderer, P., Klosch, G., Gruber, G., Trenker, E., Pascual-Marqui, R. D., Zeitlhofer, J., Barbanoj, M. J., Rappelsberger, P. and Saletu, B. Low-resolution brain electromagnetic tomography revealed simultaneously active frontal and parietal sleep spindle sources in the human cortex. Neuroscience, 2001, 103: 581592.
  • Brazier, M. A. Electrical activity recorded simultaneously from the scalp and deep structures of the human brain. A computer study of their relationships. J. Nerv. Ment. Dis., 1968, 147: 3139.
  • Broughton, R. and Hasan, J. Quantitative topographic electroencephalographic mapping during drowsiness and sleep onset. J. Clin. Neurophysiol., 1995, 12: 372386.
  • Caderas, M., Niedermeyer, E., Uematsu, S., Long, D. M. and Nastalski, J. Sleep spindles recorded from deep cerebral structures in man. Clin. Electroencephalogr., 1982, 13: 216225.
  • Contreras, D., Destexhe, A., Sejnowski, T. J. and Steriade, M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science, 1996, 274: 771774.
  • De Gennaro, L. and Ferrara, M. Sleep spindles: an overview. Sleep Med. Rev., 2003, 7: 423440.
  • Dijk, D. J. and Czeisler, C. A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci., 1995, 15: 35263538.
  • Dijk, D. J., Roth, C., Landolt, H. P., Werth, E., Aeppli, M., Achermann, P. and Borbely, A. A. Melatonin effect on daytime sleep in men: suppression of EEG low frequency activity and enhancement of spindle frequency activity. Neurosci. Lett., 1995, 201: 1316.
  • Fuchs, M., Wagner, M., Kohler, T. and Wischmann, H. A. Linear and nonlinear current density reconstructions. J. Clin. Neurophysiol., 1999, 16: 267295.
  • Gibbs, F. A. and Gibbs, E. L. Atlas of Electroencephalography. Addison-Wesley, Cambridge, MA, 1950.
  • Ishii, R., Dziewas, R., Chau, W., Soros, P., Okamoto, H., Gunji, A. and Pantev, C. Current source density distribution of sleep spindles in humans as found by synthetic aperture magnetometry. Neurosci. Lett., 2003, 340: 2528.
  • Landolt, H. P., Dijk, D. J., Achermann, P. and Borbely, A. A. Effect of age on the sleep EEG: slow-wave activity and spindle frequency activity in young and middle-aged men. Brain Res., 1996, 738: 205212.
  • Lopes da Silva, F. Functional localization of brain sources using EEG and/or MEG data: volume conductor and source models. Magn. Reson. Imaging, 2004, 22: 15331538.
  • Lu, S. T., Kajola, M., Joutsiniemi, S. L., Knuutila, J. and Hari, R. Generator sites of spontaneous MEG activity during sleep. Electroencephalogr. Clin. Neurophysiol., 1992, 82: 182196.
  • Manshanden, I., De Munck, J. C., Simon, N. R. and Lopes da Silva, F. H. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clin. Neurophysiol., 2002, 113: 19371947.
  • Montplaisir, J., Leduc, L., Laverdiere, M., Walsh, J. and Saint-Hilaire, J. M. Sleep spindles in the human hippocampus: normal or epileptic activity? Sleep, 1981, 4: 423428.
  • Moran, J. E., Drake, C. L. and Tepley, N. ICA methods for MEG imaging. Neurol. Clin. Neurophysiol., 2004, 72.
  • Moran, J. E., Bowyer, S. M. and Tepley, N. Multi-Resolution FOCUSS: a source imaging technique applied to MEG data. Brain Topogr., 2005, 18: 117.
  • Rechtschaffen, A. and Kales, A. Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. US Government Printing Office, Los Angeles, 1968.
  • Shih, J. J., Weisend, M. P., Davis, J. T. and Huang, M. Magnetoencephalographic characterization of sleep spindles in humans. J. Clin. Neurophysiol., 2000, 17: 224231.
  • Shinomiya, S., Nagata, K., Takahashi, K. and Masumura, T. Development of sleep spindles in young children and adolescents. Clin. Electroencephalogr., 1999, 30: 3943.
  • Steriade, M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience, 2000, 101: 243276.
  • Steriade, M. and Amzica, F. Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res. Online, 1998, 1: 110.
  • Steriade, M., Nunez, A. and Amzica, F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci., 1993, 13: 32663283.
  • Tepley, N. MEG: good enough-a response. Clin. Neurophysiol., 2005, 116: 236; author reply 237.
  • Timofeev, I. and Steriade, M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol., 1996, 76: 41524168.
  • Urakami, Y. Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording. J. Clin. Neurophysiol., 2008, 25: 1324.
  • Yao, J. and Dewald, J. P. Evaluation of different cortical source localization methods using simulated and experimental EEG data. Neuroimage, 2005, 25: 369382.
  • Zeitlhofer, J., Gruber, G., Anderer, P., Asenbaum, S., Schimicek, P. and Saletu, B. Topographic distribution of sleep spindles in young healthy subjects. J. Sleep Res., 1997, 6: 149155.
  • Zygierewicz, J., Blinowska, K. J., Durka, P. J., Szelenberger, W., Niemcewicz, S. and Androsiuk, W. High resolution study of sleep spindles. Clin. Neurophysiol., 1999, 110: 21362147.