Get access

Pharmacokinetics of intravenous ceftiofur sodium and concentration in body fluids of foals

Authors


Steeve Giguère, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, 2015 S.W. 16th Ave., Gainesville, FL 32610, USA. E-mail: gigueres@vetmed.ufl.edu

Abstract

The objectives of this study were to determine pharmacokinetics of intravenous (i.v.) ceftiofur in foals, to compare ultra-high performance liquid chromatography tandem mass spectometry (UPLC-MS/MS) and microbiologic assay for the measurement of ceftiofur concentrations, and to determine the minimum inhibitory concentration (MIC) of ceftiofur against common equine bacterial pathogens. In a cross-over design, ceftiofur sodium was administered i.v. to six foals (1–2 days-of-age and 4–5 weeks-of-age) at dosages of 5 and 10 mg/kg. Subsequently, five doses of ceftiofur were administered i.v. to six additional foals between 1 and 5 days of age at a dose of 5 mg/kg q 12 h. Concentrations of desfuroylceftiofur acetamide (DCA), the acetamide derivative of ceftiofur and desfuroylceftiofur-related metabolites were measured in plasma, synovial fluid, urine, and CSF by use of UPLC-MS/MS. A microbiologic assay was used to measure ceftiofur activity for a subset of plasma samples. Following i.v. administration of ceftiofur at a dose of 5 mg/kg to 1–2 day-old foals, DCA had a t½ of 7.8 ± 0.1 h, a body clearance of 74.4 ± 8.4 mL/h/kg, and an apparent volume of distribution of 0.83 ± 0.09 L/kg. After multiple i.v. doses at 5 mg/kg, DCA concentrations in CSF were significantly lower than concurrent plasma concentrations. Ceftiofur activity using a microbiologic assay significantly underestimated plasma concentrations of DCA. The MIC of ceftiofur required to inhibit growth of 90% of isolates of Escherichia coli, Pasteurella spp, Klebsiella spp, and β-hemolytic streptococci was <0.5 μg/mL. Intravenous administration of ceftiofur sodium at the rate of 5 mg/kg every 12 h would provide sufficient coverage for the treatment of susceptible bacterial isolates.

Get access to the full text of this article

Ancillary