Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography of an alpine insect species, Carabus solieri

Authors

  • S. GARNIER,

    Corresponding author
    1. INRA, Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, CS 30016, 34988 Montferrier sur Lez, France,
    2. UMR-CNRS 5561 Biogéosciences, Université de Bourgogne, 6 blvd Gabriel, 21000 Dijon, France
    Search for more papers by this author
  • P. ALIBERT,

    1. UMR-CNRS 5561 Biogéosciences, Université de Bourgogne, 6 blvd Gabriel, 21000 Dijon, France
    Search for more papers by this author
  • P. AUDIOT,

    1. INRA, Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, CS 30016, 34988 Montferrier sur Lez, France,
    Search for more papers by this author
  • B. PRIEUR,

    1. INRA, Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, CS 30016, 34988 Montferrier sur Lez, France,
    Search for more papers by this author
  • J.-Y. RASPLUS

    1. INRA, Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, CS 30016, 34988 Montferrier sur Lez, France,
    Search for more papers by this author

and present address: S. Garnier. UMR-CNRS 5561 Biogéosciences, Université de Bourgogne, 6 blvd Gabriel, 21000 Dijon, France. Fax: + 33 (0) 3 80 39 62 31; E-mail: garniers@ensam.inra.fr

Abstract

Analysis of genetic isolation by distance (IBD) is of prime importance for the study of processes responsible for spatial population genetic structure and is thus frequently used in case studies. However, the identification of a significant IBD pattern does not necessarily imply the absence of sharp discontinuities in gene frequencies. Therefore, identifying barriers to gene flow and/or secondary contact between differentiated entities remains a major challenge in population biology. Geographical genetic structure of 41 populations (1080 individuals) of an alpine insect species, Carabus solieri, was studied using 10 microsatellite loci. All populations were significantly differentiated and spatially structured according to IBD over the entire range. However, clustering analyses clearly identified three main clusters of populations, which correspond to geographical entities. Whereas IBD also occurs within each cluster, population structure was different according to which group of populations was considered. The southernmost cluster corresponds to the most fragmented part of the range. Consistently, it was characterized by relatively high levels of differentiation associated with low genetic diversity, and the slope of the regression of genetic differentiation against geographical distances was threefold those of the two other clusters. Comparisons of within-cluster and between-cluster IBD patterns revealed barriers to gene flow. A comparison of the two approaches, IBD and clustering analyses, provided us with valuable information with which to infer the phylogeography of the species, and in particular to propose postglacial colonization routes from two potential refugia located in Italy and in southeastern France. Our study highlights strongly the possible confounding contribution of barriers to gene flow to IBD pattern and emphasizes the utility of the model-based clustering analysis to identify such barriers.

Ancillary