Get access

Breeding system and demography shape population genetic structure across ecological and climatic zones in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata), intermediate host for schistosomes


J. L. Gow, Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4. Fax: +1 604 8222416; E-mail:


The role of breeding system and population bottlenecks in shaping the distribution of neutral genetic variation among populations inhabiting patchily distributed, ephemeral water bodies was examined for the hermaphroditic freshwater snail Bulinus forskalii, intermediate host for the medically important trematode Schistosoma guineensis. Levels of genetic variation at 11 microsatellite loci were assessed for 600 individuals sampled from 19 populations that span three ecological and climatic zones (ecozones) in Cameroon, West Africa. Significant heterozygote deficiencies and linkage disequilibria indicated very high selfing rates in these populations. Despite this and the large genetic differentiation detected between populations, high levels of genetic variation were harboured within these populations. The high level of gene flow inferred from assignment tests may be responsible for this pattern. Indeed, metapopulation dynamics, including high levels of gene flow as well as extinction/contraction and recolonization events, are invoked to account for the observed population structuring, which was not a consequence of isolation-by-distance. Because B. forskalii populations inhabiting the northern, Sahelian area are subject to more pronounced annual cycles of drought and flood than the southern equatorial ones, they were expected to be subject to population bottlenecks of increased frequency and severity and, therefore, show reduced genetic variability and elevated population differentiation. Contrary to predictions, the populations inhabiting the most northerly ecozone exhibited higher genetic diversity and lower genetic differentiation than those in the most southerly one, suggesting that elevated gene flow in this region is counteracting genetic drift.