SEARCH

SEARCH BY CITATION

Keywords:

  • microsatellites;
  • mtDNA;
  • phylogeography;
  • Pleistocene;
  • secondary contact;
  • Thymallus

Abstract

Mitochondrial and microsatellite DNA markers were applied to infer the phylogeography, intraspecific diversity and dynamics of the distributional history of European grayling (Thymallus thymallus) with focus on its central and northern European distribution range. Phylogenetic and nested clade analyses revealed at least four major mtDNA lineages, which evolved in geographical isolation during the Pleistocene. These lineages should be recognized as the basic evolutionary significant units (ESUs) for grayling in central and northern Europe. In addition, and in contrast to previous work on grayling, the results of Bayesian analysis of individual admixture coefficients, two-dimensional scaling analysis and spatial analysis of molecular variance provided evidence for a high level of admixture among major lineages in contact zones between drainages (e.g. the low mountain range of Germany), most likely resulting from glacial perturbations and ancient river connections between drainages during the Pleistocene glaciations. Even within river systems, a high level of differentiation among populations was revealed as indicated by the microsatellite data. Grayling sampled from 29 sites displayed high levels of differentiation (overall FST = 0.367), a high number of private alleles and high bootstrap support for the genetic distance-based population clusters across 12 loci. We specifically discuss our results in context of phylogeograpic studies on other European freshwater fish species with habitat preferences similar to those of grayling. Our study shows that both large-scale phylogeographical and detailed genetic analyses on a fine scale are mandatory for developing appropriate conservation guidelines of endangered species.