SEARCH

SEARCH BY CITATION

Keywords:

  • Atelopus;
  • gene flow;
  • phylogeography;
  • Pleistocene refugia;
  • speciation

Abstract

We investigated the genetic structure of populations of Guianan harlequin toads (genus Atelopus) and their evolutionary affinities to extra-Guianan congeners. Phylogenetic analysis of mitochondrial cytochrome b (cyt b) and NADH dehydrogenase subunit 2 (ND2) gene sequences produced well-supported clades largely corresponding to the four recognized taxa in the Guianas (Atelopus spumarius hoogmoedi, Atelopus spumarius barbotini, Atelopus franciscus, and Atelopus flavescens). Our findings suggest that the Guianan A. spumarius represent distinct evolutionary lineages that merit distinction from Amazonian conspecifics, and that the status of A. flavescens and A. franciscus is somewhat less clear. Approximately 69% of the observed genetic variation is accounted for by differences between these four recognized taxa. Coalescent-based estimates of gene flow between taxa suggest that these lineages are largely isolated from one another. Negligible rates of migration between populations and significant divergence within such close proximity suggests that although the region inhabited by these taxa is almost entirely undisturbed, significant habitat heterogeneity exists as to have produced a remarkable diversification of Atelopus within the eastern Guiana Shield. These results contradict the commonly held view of the Guiana Shield as a ‘refuge’ whose stability during late Tertiary and Quaternary climatic fluctuations served as a biotic reservoir. Instead, we provide evidence that climatic fluctuations during this time had a diversifying effect within the Guianan region.