SEARCH

SEARCH BY CITATION

Keywords:

  • assignment of sibship;
  • correlated paternity;
  • effective number of pollen donors;
  • flowering phenology;
  • outcrossing rate;
  • twogener analysis

Abstract

In alpine ecosystems, microscale variation in snowmelt timing often causes different flowering phenology of the same plant species and seasonal changes in pollinator activity. We compared the variations in insect visitation, pollen dispersal, mating patterns, and sexual reproduction of Rhododendron aureum early and late in the flowering season using five microsatellites. Insects visiting the flowers were rare early in the flowering season (mid-June), when major pollinators were bumblebee queens and flies. In contrast, frequent visitations by bumblebee workers were observed late in the season (late July). Two-generation analysis of pollen pool structure demonstrated that quality of pollen-mediated gene flow was more diverse late in the season in parallel with the high pollinator activity. The effective number of pollen donors per fruit (Nep) increased late in the season (Nep = 2.2–2.7 early, 3.4–4.4 late). However, both the outcrossing rate (tm) and seed-set ratio per fruit were smaller late in the season (tm = 0.89 and 0.71, seed-set ratio = 0.52 and 0.18, early and late in the season, respectively). In addition, biparental inbreeding occurred only late in the season. We conclude that R. aureum shows contrasting patterns of pollen movement and seed production between early and late season: in early season, seed production can be high but genetically less diverse and, during late season, be reduced, possibly due to higher inbreeding and inbreeding depression, but have greater genetic diversity. Thus, more pollinator activity does not always mean more pollen movement.