SEARCH

SEARCH BY CITATION

Keywords:

  • California sea lion;
  • heterosis;
  • heterozygosity;
  • hookworms;
  • neonatal survival;
  • Uncinaria

Abstract

Low genetic heterozygosity is associated with loss of fitness in many natural populations. However, it remains unclear whether the mechanism is related to general (i.e. inbreeding) or local effects, in particular from a subset of loci lying close to genes under balancing selection. Here we analyse involving heterozygosity–fitness correlations on neonatal survival of California sea lions and on susceptibility to hookworm (Uncinaria spp.) infection, the single most important cause of pup mortality. We show that regardless of differences in hookworm burden, homozygosity is a key predictor of hookworm-related lesions, with no single locus contributing disproportionately. Conversely, the subsequent occurrence of anaemia due to blood loss in infected pups is overwhelmingly associated with homozygosity at one particular locus, all other loci showing no pattern. Our results suggest contrasting genetic mechanisms underlying two pathologies related to the same pathogen. First, relatively inbred pups are less able to expel hookworms and prevent their attachment to the intestinal mucosa, possibly due to a weakened immune response. In contrast, infected pups that are homozygous for a gene near to microsatellite Hg4.2 are strongly predisposed to anaemia. As yet, this gene is unknown, but could plausibly be involved in the blood-coagulation cascade. Taken together, these results suggest that pathogenic burden alone may not be the main factor regulating pathogen-related mortality in natural populations. Our study could have important implications for the conservation of small, isolated or threatened populations, particularly when they are at a risk of facing pathogenic challenges.