Get access

The genetic structure of hawthorn-infesting Rhagoletis pomonella populations in Mexico: implications for sympatric host race formation


Jeffrey L. Feder, Fax: 574-631-7413; E-mail:


The genetic origins of species may not all trace to the same time and place as the proximate cause(s) for population divergence. Moreover, inherent gene-flow barriers separating populations may not all have evolved under the same geographical circumstances. These considerations have lead to a greater appreciation of the plurality of speciation: that one geographical mode for divergence may not always be sufficient to describe a speciation event. The apple maggot fly, Rhagoletis pomonella, a model system for sympatric speciation via host-plant shifting, has been a surprising contributor to the concept of speciation mode plurality. Previous studies have suggested that past introgression of inversion polymorphism from a hawthorn-fly population in the trans-Mexican volcanic belt (EVTM) introduced diapause life-history variation into a more northern fly population that subsequently contributed to sympatric host race formation and speciation in the United States (US). Here, we report results from a microsatellite survey implying (i) that volcanic activity in the eastern EVTM may have been responsible for the initial geographical isolation of the Mexican and northern hawthorn-fly populations c. 1.57 mya; and (ii) that flies in the Sierra Madre Oriental Mountains (SMO) likely served as a conduit for past gene flow from the EVTM into the US. Indeed, the microsatellite data suggest that the current US population may represent a range expansion from the northern SMO. We discuss the implications of these findings for sympatric race formation in Rhagoletis and speciation theory.

Get access to the full text of this article