Get access

Kin structure provides no explanation for intruders in social aphids


Patrick Abbot, E-mail:


Nontraditional social organisms have received increasing attention in recent years, because they present opportunities to study the convergent properties of social evolution. Some aphid species are social, occurring in dense clones with specialized morphs that attack predators and parasites. Little is known about how social aphid colonies resolve conflicts of interest when clonal barriers break down. Pemphigus obesinymphae is a North American gall-forming social aphid that produces both nymphal defenders that protect natal clones, and specialized intruders that invade other nearby clones on their host plants. We tested the hypothesis that clones are arranged on their host plants in spatial clusters of related family groups, such that intruders would be biased towards movement within kin groups. Movement within and not between kin groups would then provide insight into the nature of conflict in this social aphid. We sampled eight sites in the eastern United States and in Arizona, and used eight microsatellite markers to estimate pairwise relatedness between spatial groups. We found little evidence of deviation from random distributions of genotypes on their host plants. Evidently, Pem. obesinymphae intruders typically exploit unrelated clones, and spatial orientation provides no solution to the problem of ‘polyclonality’ in this species. We discuss implications of this result for our understanding of cooperation and conflict in social aphids.