SEARCH

SEARCH BY CITATION

Keywords:

  • AFLP;
  • genetic diversity;
  • hybridization;
  • loci under selection;
  • population structure;
  • statistical analysis

Abstract

  1. Top of page
  2. Abstract
  3. Introduction
  4. Experimental design of AFLP studies
  5. Statistical methods in AFLP analysis
  6. Discussion and future directions
  7. Acknowledgements
  8. References

Recently, the amplified fragment length polymorphism (AFLP) technique has gained a lot of popularity, and is now frequently applied to a wide variety of organisms. Technical specificities of the AFLP procedure have been well documented over the years, but there is on the contrary little or scattered information about the statistical analysis of AFLPs. In this review, we describe the various methods available to handle AFLP data, focusing on four research topics at the population or individual level of analysis: (i) assessment of genetic diversity; (ii) identification of population structure; (iii) identification of hybrid individuals; and (iv) detection of markers associated with phenotypes. Two kinds of analysis methods can be distinguished, depending on whether they are based on the direct study of band presences or absences in AFLP profiles (‘band-based’ methods), or on allelic frequencies estimated at each locus from these profiles (‘allele frequency-based’ methods). We investigate the characteristics and limitations of these statistical tools; finally, we appeal for a wider adoption of methodologies borrowed from other research fields, like for example those especially designed to deal with binary data.


Introduction

  1. Top of page
  2. Abstract
  3. Introduction
  4. Experimental design of AFLP studies
  5. Statistical methods in AFLP analysis
  6. Discussion and future directions
  7. Acknowledgements
  8. References

The amplified fragment length polymorphism (AFLP) technique has aroused a lot of enthusiasm since its development in the mid-1990s (Vos et al. 1995). By bringing key answers to major biological issues in a wide variety of organisms, like fungi (Kis-Papo et al. 2003), plants (Savolainen et al. 2006), birds (Irwin et al. 2005), fish (Barluenga et al. 2006) and even humans (Prochazka et al. 2001), it has established itself as a valuable genetic marker system in population genetics, ecology and evolution.

Technical specificities of the AFLP procedure have been well documented over the years (see for example Mueller & Wolfenbarger 1999; Bensch & Akesson 2005; Mba & Tohme 2005; Meudt & Clarke 2007). Likewise, the performances of AFLPs compared to traditional codominant markers like microsatellites or allozymes have been investigated on several occasions (e.g. Mariette et al. 2001; Mariette et al. 2002; Gaudeul et al. 2004; Nybom 2004). On the contrary, there is little or scattered information about the statistical analysis of AFLPs. As a result, the whole body of population diversity and structure descriptors, originally developed for codominant and multi-allelic markers, has often been applied to AFLP data without any real assessment or discussion of their appropriateness (Hollingsworth & Ennos 2004). Even more surprising, AFLP studies largely ignore some alternative methods that could be particularly helpful. One example is logistic regression, which is very popular in ecology (e.g. Manel et al. 1999), but much less in population genetics (see Joost & Bonin in press; Joost et al. in press).

Two features of AFLPs considerably constrain their statistical analysis (Meudt & Clarke 2007). First, polymorphic AFLP loci are generally scored for two alleles, the ‘band-presence’ allele and the ‘band-absence’ allele. Each locus is thus less informative than a typical multi-allelic microsatellite locus, although the large number of AFLP markers available across the genome and their largely random (but see Rogers et al. 2007) distribution balance this drawback (Mariette et al. 2002; Campbell et al. 2003; Kremer et al. 2005). Second, AFLP markers are generally scored as dominant markers. Thus, it is difficult to distinguish heterozygous individuals from individuals homozygous for the band-presence allele, unless exact genotypes can be inferred from pedigree studies (van Haeringen et al. 2002).

On the basis of these characteristics, two different approaches exist to extract statistical information from AFLP data (Kosman & Leonard 2005; see Box 1). The first one corresponds to the direct study of AFLP band presences or absences. We will refer to it as the ‘band-based’ approach. The second one, that we call the ‘allele frequency-based’ approach, consists in estimating allelic frequencies at each locus. Several procedures have been proposed to obtain allelic frequencies from dominant biallelic data in diploids, and most of them rely either on the Hardy–Weinberg hypothesis or on a known inbreeding coefficient (Box 1). Estimates of allelic frequencies are then used to survey genetic diversity or differentiation with classical population genetics methods.

In this review, we aim to address the statistical aspects of AFLP analysis, focusing on four of the important research topics previously identified by Bensch & Akesson (2005): (i) assessment of genetic diversity; (ii) identification of population structure; (iii) identification of hybrid individuals; and (iv) detection of markers associated with phenotypes. More precisely, we present the statistical methods most widely used for AFLP data, including both band-based and allele frequency-based methods, and investigate their characteristics and limitations. Most of the procedures examined here were developed in a population genetics framework, to deal with codominant or, more rarely, with dominant markers, but we also consider more general statistical strategies suitable for binary data like presence or absence of bands. In addition, we discuss some aspects of the experimental design, which are important for subsequent statistical analysis. Finally, we define topics for exciting future researches and notably discuss the lack of an established mutation model for AFLP data. Our review is mainly centred on AFLPs, but will also be largely valid for other dominant biallelic markers: random amplified polymorphic DNA (RAPD, Williams et al. 1990), intersimple sequence repeat (ISSR, Zietkiewicz et al. 1994; Wolfe et al. 1998), and diversity arrays technology (DArT) markers (Jaccoud et al. 2001).

Experimental design of AFLP studies

  1. Top of page
  2. Abstract
  3. Introduction
  4. Experimental design of AFLP studies
  5. Statistical methods in AFLP analysis
  6. Discussion and future directions
  7. Acknowledgements
  8. References

The power of any AFLP analysis depends on the sampling strategy and experimental protocol chosen in the early stage of the study. Establishing the experimental design is thus a crucial step that deserves careful consideration and should take into account the specific features of AFLP markers (e.g. dominance and biallelism).

Sampling strategy: how many bands and individuals?

Various parameters (e.g. mating system, effective population size, existing level of population structure) influence the accuracy of population genetics estimates (Mohammadi & Prasanna 2003; Mendelson & Shaw 2005; Singh et al. 2006). Among these parameters, only two can really be chosen when establishing a sampling strategy: the numbers of individuals and loci sampled.

To achieve the same level of accuracy in estimates of population parameters, studies based on AFLPs require an extra sampling effort compared to those employing codominant markers, because of the low information content of dominant biallelic data. More precisely, it is suggested to genotype 2–10 times more individuals per population for AFLPs than for microsatellites (Lynch & Milligan 1994; Mariette et al. 2002; Nybom 2004). Krauss (2000) found that most procedures for estimating diversity in AFLP data yield accurate results when about 30 individuals were analysed per population. This recommendation is far from being followed in practice: for example, Nybom (2004) registered only an average of 14.5 samples per population in a compilation of 27 AFLP studies in plants.

The optimal number of AFLP markers to assess depends on the goal to achieve (Mendelson & Shaw 2005). When searching for loci under selection or associated with a phenotype, there is no theoretical upper limit where extra sampling effort is worthless since it is preferable to screen as many loci as possible (Luikart et al. 2003; Storz 2005). In practice, the true degree of genome coverage remains difficult to evaluate without information on both the genome size and the localization of the markers (by way of genome sequencing or linkage mapping). A literature survey reveals that genome scans looking for selection signatures among AFLPs are usually based on more than 300–400 markers (e.g. Campbell & Bernatchez 2004; Wilding et al. 2001; Bonin et al. 2006). On the contrary, for classical surveys of genetic diversity, population structure, genetic relatedness, or assignment tests, there is usually a range in the number of markers below which sampling variance is too high and estimates are thus not reliable. Conversely, sampling above this range does not necessarily increase the power but may add some noise in the data (Hollingsworth & Ennos 2004). Several research groups have tried to specify the acceptable number of markers to consider in particular situations. Cavers et al. (2005) explored the sampling limit for reasonable estimates of the fine-scale spatial genetic structure in natural tree populations with limited gene flow and seed dispersal. They simulated an artificial population of 1900 trees in a 1200 x 1200-m area (using diameter distribution and density data) for the neotropical tree species, Symphonia globulifera. An artificial genotype at 100 AFLP loci was assigned to each tree, so that (i) overall, the frequency of the band-presence allele was evenly distributed from 5% to 95% over all loci; (ii) there was no initial fine-scale genetic structure; and (iii) the genotypes were in Hardy–Weinberg proportions. Then, the evolution of this population was simulated for 1000 years several times given limited pollen and seed dispersal. The results indicated that 150 individuals have to be genotyped at 100 loci for a reliable estimation of the fine-scale genetic structure. However, these values may not be extendable to species with weaker genetic structure or to other allelic frequency distributions (Cavers et al. 2005). Hollingsworth & Ennos (2004) investigated the efficiency of simulated dominant data to build resolved neighbour-joining trees and showed that 250 loci were required to correctly cluster individuals at low levels of population differentiation. Data sets with fewer markers (e.g. 50) were unable to resolve the tree topology even at much higher levels of population differentiation. A sufficient number of markers is thus primordial to unravel the true genetic structure of populations using clustering methods. The general pattern emerging from these results is that the optimum number of loci differs considerably according to the studied species, its reproductive biology, the level of gene flow between populations, etc. However, assessing at least 200 AFLP markers seems to be an acceptable starting point when measuring genetic variation or differentiation (Mariette et al. 2002; Hollingsworth & Ennos 2004; Cavers et al. 2005; Singh et al. 2006), even if this might be sometimes difficult to achieve in practice.

Obtaining the data: technical pitfalls to be avoided

Although the AFLP technique is highly reproducible, with error rates typically falling in a 2–5% range (Hansen et al. 1999; Ajmone-Marsan et al. 2002; Bonin et al. 2004), genotyping errors should not be overlooked. They can arise from various causes such as sample contamination, biochemical artefacts, human error, low quality DNA, etc. (Bonin et al. 2004; Pompanon et al. 2005), but two types of errors prevail in AFLP genotyping: allele homoplasy and scoring errors.

Allele homoplasy occurs when nonhomologous fragments migrate at the same position in an electrophoretic profile, or when different mutations lead to the loss of the same fragment (Meudt & Clarke 2007; Simmons et al. 2007). Estimates of genetic diversity or differentiation are thus expected to be biased downwardly (Koopman & Gort 2004) and this ultimately limits the power of the analyses (Vekemans et al. 2002; Meudt & Clarke 2007). Investigating the reasons of the absence of a particular band is difficult. Thus, the empirical study of allele homoplasy has often been restricted to the sequencing of comigrating fragments at different taxonomic levels. It appears that homoplasy of comigrating fragments is limited in intraspecific comparisons (Rouppe van der Voort et al. 1997; Veckemans et al. 2002; Mendelson & Shaw 2005) but increases with the taxonomic distance (Mechanda et al. 2004). In addition, the smaller fragments (< 150 bp) and dense profiles are particularly subject to homoplasy (Veckemans et al. 2002; Mendelson & Shaw 2005). When choosing AFLP markers, we advise (i) confining the analyses to the intraspecific level and avoiding transfers of markers between species; (ii) favouring primer combinations that generate clearly readable and exploitable profiles (with a number of bands < 100 and whose bands are homogeneously scattered along the profile); (iii) giving preference to longer bands as markers; and (iv) if possible, assessing the extent of fragment homoplasy by means of sequencing, in silico analyses (Rombauts 2003), or other available protocols (Hansen et al. 1999; O’Hanlon & Peakall 2000).

Scoring errors can represent the vast majority of genotyping errors occurring in AFLP data sets (Bonin et al. 2004). This is mostly due to the difficulty and subjectivity in correctly reading profiles, especially when there are differences in band intensity between individuals or between runs. Therefore, the scoring step has to be taken seriously and entrusted to experienced and meticulous laboratory staff. Double reading of the profiles is also a helpful method to limit scoring errors (Bonin et al. 2004). In any case, running replicates, tracking all genotyping errors and estimating their rate should be a priority in any AFLP study (see Pompanon et al. 2005). At a particular locus, the genotyping error rate can be calculated as the ratio of the total number of mismatches (band presence vs. band absence) to the number of replicated individuals (Pompanon et al. 2005). The maximum acceptable error rate for an individual locus will vary according to the goal of the study (Bonin et al. 2004; Pompanon et al. 2005) but we recommend it never exceeds 0.1. The number of replicated individuals is also crucial for an accurate estimation of the error rate, and should represent a substantial fraction of the total number of samples (> 5–10%).

Another major technical concern is the problem of nonindependence of markers. It occurs, for example, when a mutation, deletion or insertion displaces an AFLP band along a profile and when the two positions are scored as two independent loci whereas they are linked (Simmons et al. 2007). This issue of nonindependence of AFLP markers is increasingly recognized in phylogenetic reconstruction (Koopman 2005; Simmons et al. 2007). On the contrary, it is still largely ignored in population genetics and ecology although it has the potential to artificially inflate similarity and relatedness indices. In practice, nonindependence of markers can be ruled out by testing marker linkage disequilibrium (e.g. Gaudeul et al. 2004), but there is a clear need for more sophisticated methods to allow for nonindependence of markers in the analyses.

Statistical methods in AFLP analysis

  1. Top of page
  2. Abstract
  3. Introduction
  4. Experimental design of AFLP studies
  5. Statistical methods in AFLP analysis
  6. Discussion and future directions
  7. Acknowledgements
  8. References

Genetic diversity

Since its development, the AFLP technique has been primarily dedicated to assessments of intraspecific genetic diversity. This is especially true for plants (e.g. Gaudeul et al. 2004; Nybom 2004; Mba & Tohme 2005) and crop cultivars (e.g. Shan et al. 2005; Wu et al. 2006), bacteria and fungi (e.g. Kis-Papo et al. 2003; Kolliker et al. 2006), but also for invertebrates (Mendelson & Shaw 2005; Conord et al. 2006) and vertebrates, including fish (McMillan et al. 2006), birds (Wang et al. 2003) and mammals (Polyakov et al. 2004; Foulley et al. 2006; SanCristobal et al. 2006).

Box 2 lists several parameters which are routinely encountered in studies of genetic variation with AFLPs and all fall either under the band-based or the allele frequency-based approaches previously described. The band-based metrics can be directly estimated from the AFLP profiles and include various coefficients of similarity (the Jaccard, Dice, or simple-matching coefficients; Box 1), in addition to the Shannon index (Shannon 1948) and, less employed so far, the nucleotide diversity π (Clark & Lanigan 1993; Borowsky 2001). Some coefficients of relatedness developed for dominant markers could also qualify for the band-based category; however, they will not be mentioned further here because of their more restricted use (see Hardy 2003; Wang 2004; Ritland 2005). On the other hand, Nei's gene diversity (Nei 1973; Nei 1978) is based on allele frequencies and requires additional assumptions, but produces estimates which are directly comparable with estimates from codominant markers.

The properties and robustness of these different measures of diversity have seldom been properly assessed, and in many studies, the choice of a particular metric seems to be attributable to chance more than to rationale. This has the potential to lead to serious inconsistencies and debatable results (Kosman & Leonard 2005). A few general rules can help to select the most appropriate diversity metrics in a specific case. First, even if coefficients of similarity are expected to be highly correlated (Duarte et al. 1999; Shan et al. 2005), this should not be taken for granted and should be carefully tested. Poor correlation may for example be a clue of frequent homoplasy of band absence, and in that particular case, more credit is given to results based on Jaccard or Dice coefficients (Duarte et al. 1999; Mohammadi & Prasanna 2003; Meudt & Clarke 2007). Nonetheless, as noticed by Koopman & Gort (2004), these two similarity coefficients still ignore the issue of comigrating bands. Second, although the use of Nei's gene diversity is questionable because of its dependency on the Hardy–Weinberg hypothesis (Mendelson & Shaw 2005), multilocus estimates of this index have proved to be robust to violations of this assumption (Kremer et al. 2005). This underlines the importance of surveys of genetic diversity based on a sufficiently large number of loci, that is, at least several hundreds (Mariette et al. 2002; Kremer et al. 2005). More generally, Nei's gene diversity is considered reliable when (i) a substantial number of individuals are sampled in the population, allowing an accurate estimation of allele frequencies (Mba & Tohme 2005); and when (ii) outcrossing species are examined (Meudt & Clarke 2007).

Example. SanCristobal et al. (2006) examined the genetic diversity in 58 European pig breeds and one Chinese breed (n = 50 individuals per breed) using a set of 148 AFLP markers generated with four different primer combinations. Allele frequencies were estimated with the square-root procedure under the Hardy–Weinberg hypothesis. The results showed that AFLP markers could be partitioned into two distinct groups according to their levels of polymorphism within breeds: a quasi-monomorphic group (M) and a more polymorphic one (P). On average, the percentage of monomorphic loci per breed was 63%. The correlation coefficient between the average simple-matching coefficient and Nei's gene diversity was 0.69 (P < 0.001). Nei's gene diversity obtained with markers from the P group was comparable to estimates from 50 microsatellite loci genotyped in the same animals. On the contrary, there was little correlation between diversity indices calculated from the M group and from microsatellites. Foulley et al. (2006) re-examined the same data set but estimated allelic frequencies following Hill & Weir (2004). This procedure allowed considering the quasi-monomorphic (M group) and the more polymorphic (P group) markers together in the calculations of genetic diversity. Results were considerably different from those obtained with the square-root method, which indicates that the method by Hill & Weir (2004) may be particularly helpful in cases of low levels of polymorphism.

Population structure

As underlined by Bensch & Akesson (2005), ‘The top of the agenda for many molecular ecologists is to study the genetic structure of populations’. Evaluating population structure is of considerable interest because it is a precursor to answering many other questions such as estimating migration, identifying conservation units, and specifying phylogeographical patterns (Manel et al. 2005). So far, AFLPs have been used in a range of applications to assess population structure from small to large scales (e.g. de Casas et al. 2006; Hardy et al. 2006; Rivera-Ocasio et al. 2006). The methods mentioned below and the related softwares are summarized in Table 1.

Table 1.  Methods and associated softwares for the statistical analysis of AFLP data. The software list is not exhaustive
MethodsApproachExample of software(s)Underlying assumptionsCommentsReference(s)
Genetic diversity
Estimation of band-based metricsBand-basedpco* Estimation of various similarity indices (Jaccard, Dice, simple-matching, etc.)(Anderson 2003)
 Band-basedpopgene Estimation of the Shannon Index(Yeh & Boyle 1997)
Estimation of allele frequency-based metricsAllele frequency-basedaflp-survHardy–Weinberg equilibrium or known FISEstimation of Nei's gene diversity from allelic frequencies calculated with the square-root or the Bayesian procedure(Veckemans et al. 2002)
 Allele frequency-basedpopgene genalex§Hardy–Weinberg equilibrium (or known FIS for popgene)Estimation of Nei's gene diversity and Nei's genetic distance from allelic frequencies calculated with the square-root procedure(Yeh & Boyle 1997; Peakall & Smouse 2006)
Population structure — no prerequisite about populations
Nonspatial descriptive methods
Neighbour-joining treesBand- or allele frequency-basedtreecon phylip version 3.6**Independent lociVisual representation of a distance matrix(Van de Peer & De Wachter 1994; Felsenstein 2004)
Multivariate analyses (e.g. principal coordinate analysis)Band- or allele frequency-basedpco* Visual representation of a distance matrix(Anderson 2003)
Nonspatial Bayesian clustering methods
 Band-basedstructure version 2.1††Hardy–Weinberg equilibrium Independent loci or known linkage groupsRequires successive trials to estimate the number of clusters. Analysis of band frequencies: data are coded with missing values for the second allele(Pritchard et al. 2000)
 Allele frequency-basedstructure version 2.2††Hardy–Weinberg equilibrium Independent loci or known linkage groupsAccounts for the genotypic ambiguity inherent in dominant markers(Falush et al. in press)
 Band-basedbaps‡‡Hardy–Weinberg equilibriumIndependent loci Analysis of band frequencies: data are coded with missing values for the second allele(Corander et al. 2003)
Spatial Bayesian clustering methods
 Band-basedgeneland§§Hardy–Weinberg equilibrium Independent loci Analysis of band frequencies: data are coded with missing values for the second allele(Guillot et al. 2005)
 Band-basedtess¶¶Hardy–Weinberg equilibriumIndependent loci Analysis of band frequencies: data are coded with missing values for the second allele(François et al. 2006)
 Band-basedbaps4‡‡Hardy–Weinberg equilibriumIndependent lociAnalysis of band frequencies: data are coded with missing values for the second allele(Corander et al. in press)
Methods to identify barriers to gene flow
Based on the Monmonier AlgorithmBand-basedbarrier*** Analysis of distances between individuals(Manni et al. 2004)
 Band-basedais††† Analysis of band frequencies(Miller 2005)
Based on WomblingBand-basedwombsoft‡‡‡ Analysis of band frequencies(Crida & Manel in press)
Mantel test to test for isolation by distance
 Allele frequency-basedspagedi§§§Hardy–Weinberg equilibrium or known FISAnalysis of pairwise relatedness between individuals(Hardy & Vekemans 2002)
 Band- or allele frequency-basedgenalex§ Analysis of the correlation between a geographic matrix and a distance matrix for individuals or populations(Peakall & Smouse 2006)
Spatial autocorrelation
 Band-basedgenalex§ Based on a distance matrix of individuals or populations(Peakall & Smouse 2006)
 Band-basedsgs¶¶¶ No missing data allowed(Degen et al. 2001)
Population structure — prerequisite about populations
Estimation of FST
 Band- or allele frequency-basedpopgeneHardy–Weinberg equilibrium or known FISEstimation of band frequencies or estimation of allelic frequencies calculated with the square-root procedure(Yeh & Boyle 1997)
 Band- or allele frequency-basedaflp-survHardy–Weinberg equilibrium or known FISEstimation of band frequencies or estimation of allelic frequencies calculated with the square-root procedure or the Bayesian procedure(Vekemans et al. 2002)
 Allele frequency-basedhickory****Beta distribution of allelic frequency variation across populations FIS and FST similar across lociBayesian estimation FST Also provides estimates of allelic frequencies and FIS, but these are less reliable(Holsinger et al. 2002)
Analysis of molecular variance (amova)Band-basedarlequin†††† Based on a phenotypic (band-based) distance matrix(Excoffier et al. 1992)
Identification of hybrids
Bayesian clustering methodsAllele frequency-basednewhybrids‡‡‡‡ Bayesian identification of hybrid individuals Distinction between several categories of hybrids(Anderson & Thompson 2002)
 Band- or allele frequency-basedstructure†† baps‡‡See above — Population structure
Assignment testBand-basedaflpop§§§§  (Duchesne & Bernatchez 2002)
Identification of candidate loci for selection
Estimation of the null distribution of genetic differentiation
 Allele frequency-basedwinkles¶¶¶¶Hardy–Weinberg equilibriumSimulation of neutral genetic differentiation between two populations Estimation of allelic frequencies by the square-root procedure(Wilding et al. 2001)
 Allele frequency-baseddfdist*****Hardy–Weinberg equilibriumSimulation of neutral genetic differentiation between two populations or more Estimation of allelic frequencies by the Bayesian procedure(Beaumont & Nichols 1996)
Logistic regression
 Band-basedr†††††Binomial distribution for the response variable No correlation between explanatory variablesAllows identifying the specific selection pressure(s)(R Development Core Team 2004)

Identification of populations.  For many species, demarcation of populations is problematical, and there is no a priori knowledge of population entities. Tree-based methods (Hollingsworth & Ennos 2004) or multivariate analysis (e.g. principal coordinates analysis), which allow to graphically represent distance matrices, are well adapted to exploratory analyses (see Box 1 for distances). But for statistical inferences, model-based approaches such as the Bayesian clustering methods are more suitable (e.g. Pritchard et al. 2000).

Most of the clustering methods (Pritchard et al. 2000; Falush et al. 2003; Corander et al. 2004; Wu et al. 2006), reviewed in Manel et al. (2005) and in Wu et al. (2006), are applied to dominant markers, although until recently, no AFLP-specific implementation existed. Clusters are in this case characterized by their band frequencies. For example, in the case of structure 2.1, the most widely used method to infer population structure (not AFLP specific), the presence/absence of a band is treated as a haploid allele and the second allele at each locus is entered as missing. Using presence/absence of bands directly is valid under the no-admixture model, but not correct for the estimation procedure of structure 2.1 under the admixture model (see documentation of structure 2.1). Similarly, in the case of baps (Corander et al. 2004), dominant data are entered into the program as haploid.

Recently, a modified version of structure treating dominant markers explicitly was developed (version 2.2, Falush et al. in press). This version allows estimating admixture proportions. Instead of assuming that the genotype of each individual at each locus is known (or entirely unknown in the case of missing data) as in the previous version, structure version 2.2 treats the genotypes themselves as unknown. The observations (i.e. the dominant data) provide only partial information about the genotypes, and an additional step is introduced into the algorithm, which updates the diploid genotypes based on the probability of all possible genotypes (Falush et al. in press). From simulations, Falush et al. (in press) showed that the allelic frequency estimates are more accurate when the alleles are codominant, especially when the frequency of the presence allele is high. However, the difference to the accuracy obtained when making one allele recessive to the other (i.e. dominant markers) is rather small. We strongly recommend using the version adapted for dominant markers.

When geographical locations of individuals are known and sampling is relatively even in space, spatial model-based clustering methods are available to identify clusters of individuals (Guillot et al. 2005; François et al. 2006; Corander et al. in press). Assuming that populations occupy geographically delimited areas, the use of spatial information increases the power to correctly detect the underlying population structure. But these spatial methods have not been developed specifically for dominant markers and require adding missing values (see above). We will thus not discuss these approaches any further (see François et al. 2006 for a technical discussion).

Specific spatial methods looking for genetic boundaries at the individual level can be applied directly to infer population structure from dominant markers. Once genetic boundaries have been identified and their significance assessed, it is possible to assemble clusters of individuals. Two different band-based approaches can be used. First, the Monmonier algorithm (Monmonier 1973; Manni et al. 2004; Miller 2005) is based on the analysis of the genetic distances between individuals (see Box 1). The first step of this approach consists in connecting the sampled localities using a graphical method for defining adjacent points on a map. Genetic distances are computed between all pairs of localities connected by direct edges, and genetic boundaries are then associated with the highest genetic distances. Second, the Wombling is based on the analysis of band frequencies (Womble 1951; Barbujani et al. 1989). It locates boundaries across a sampled area by searching regions where the gradient (i.e. slope) in allelic frequency is steep.

Finally, for species in which individuals are continuously distributed and/or where sampling was continuous, spatial autocorrelation (Epperson 2003; Hardy 2003) or regression methods (Rousset 1997; Bensch et al. 2002a) can be used to investigate a pattern of genetic isolation by distance (Table 1).

Estimation of FST values.  Once populations have been defined, a common question is ‘how different are they?’ (Manel et al. 2005). Five different methods can be found in the literature to estimate FST from dominant markers (Table 1): (i) classical estimation of FST (Weir & Cockerham 1984) or GST (Nei 1987) based on the estimation of allele frequencies (see Holsinger 1999 for the difference between the two parameters); (ii) Bayesian estimation of FST that introduces uncertainty about the magnitude of FIS (Holsinger et al. 2002); (iii) ΦST, which can be estimated in an analysis of molecular variance (amova; Excoffier et al. 1992) from a distance matrix. The amova requires a metric with Euclidean properties (see Reif et al. 2005 for description of these properties), such as the simple-matching coefficient (Box 1). In addition, genetic differentiation can be estimated by (iv) partitioning nucleotide diversity (Box 1) according to Charlesworth (1998) (e.g. Tero et al. 2005); or by (v) calculating FST according to the moment-based method developed by Hill & Weir (2004) (e.g. Foulley et al. 2006). In addition, structure 2.2 calculates population-specific FST estimates for identified clusters under the F-model (Falush et al. 2003).

Box 3 presents a comparison of the three first estimation approaches for real and simulated AFLP data. The partitioning of nucleotide diversity is based on several additional assumptions (Innan et al. 1999) and rarely used; therefore it was not considered further. The method proposed by Hill & Weir (2004) was also not included in our comparisons because it is by now not implemented in any easy accessible software, and has to our knowledge been applied only once (Foulley et al. 2006).

Our calculated examples showed that one has to be cautious in interpreting differentiation estimated from dominant data. While several methods overestimated differentiation, others clearly underestimated it. It is thus only possible to compare levels of differentiation estimated using the same method. Sample sizes of 10 individuals, regularly occurring in empirical studies, produced biased estimates in most cases. Larger sample sizes (50 individuals) improved allele frequency-based estimates considerably. The number of loci used (300 or 150) had a negligible effect on the estimates. Our simulations showed that, given a sufficient number of sampled individuals, allele frequency-based estimates should be preferred. However, the analysis of empirical data sets showed that the relative level of differentiation is in general the same independently of the estimation method chosen, and independently of assumptions about the FIS value. Comparative interpretations, which are common in phylogeographical and ecological studies, are thus rather robust.

Example.  Few studies use several approaches simultaneously to estimate population differentiation. Tero et al. (2005) investigated the genetic structure in the endangered plant species Silene tatarica by analysing 193 polymorphic AFLPs in plants from seven sites (24–30 individuals per site) in order to address the degree of isolation of the subpopulations. Using structure 2.1 (Pritchard et al. 2000), they identified the seven subpopulations in which the individuals were collected. They found considerable discrepancies between the results of different estimators of differentiation, in accordance with Box 3. The Bayesian method of Holsinger et al. (2002) provided only weak evidence of inbreeding in the total population, but Holsinger et al. (2002) advise to regard estimates of FIS derived from dominant markers with caution. This method estimated the FST value among all subpopulations around 0.287 ± 0.012. This was lower than the FST estimates based on allele frequencies using the square-root method as implemented in popgene (FST = 0.390 ± 0.018, assuming Hardy–Weinberg equilibrium), the amova estimate (ΦST = 0.369), and the value estimated on the basis on nucleotide diversities (FST = 0.580).

Interpretation of population structure: dispersal and phylogeography.  Once the population structure has been identified and quantified, it can be interpreted in the context of various biological questions. Below we discuss two common examples: the estimation of dispersal rates and the discussion of phylogeographical patterns.

Several approaches exist to estimate dispersal rates from AFLP data. Methods differ by the timescale over which gene flow is estimated and by their dependence on underlying models, whose assumptions are usually not tested (Sork et al. 1999; Hardy et al. 2006). The difficulties associated with the estimation of dispersal rates from genetic data are not specific to AFLPs. The oldest and most classical approach is to assume an island model of structure and migration–drift equilibrium, and to estimate a mean dispersal rate from FST. This approach has been amply criticized (e.g. Whitlock & McCauley 1999). Applying this approach to AFLP data, de Casas et al. (2006) estimated gene flow and showed that reproductive barriers separated neither populations nor lineages of Olea europaea in the western Mediterranean area. In a continuous habitat, dispersal distances can be estimated from the slope of genetic differentiation against geographical distance (isolation-by-distance approach; Rousset 1997). As the previous one, this approach assumes migration–drift equilibrium and has been shown to perform best at small geographical scales (Rousset 1997). Hardy (2003) introduced an estimation of pairwise relatedness between individuals for dominant markers that can be used instead of genetic differentiation in the isolation-by-distance approach (Table 1). Dispersal distance can thus be estimated directly from individual data, without calculating pairwise FST estimates between populations. This estimator does not assume genotypes to be in Hardy–Weinberg proportions but requires knowledge of the inbreeding coefficient. It has been successfully used to compare gene dispersal distance in 10 neotropical tree species (Hardy et al. 2006). A third approach to assess recent gene flow consists in identifying individual migrants using assignment tests (Paetkau et al. 2004; Manel et al. 2005). Assignment of individual genotypes to the most likely population of origin can be carried out using the band-based method implemented in aflpop (Raffl et al. 2006), an assignment test based on genetic distances as implemented in geneclass (Mariac et al. 2006), or a Bayesian clustering program such as structure. The two first approaches are clearly best at small scales, as genetic differentiation at larger scales is strongly influenced by history, migration–drift equilibrium is reached very slowly and the assumption of no mutation is more probable to be wrong at large scales.

AFLPs are commonly used in phylogeographical studies, especially in plants (e.g. Després et al. 2002; Schonswetter et al. 2004; Skrede et al. 2006). In such a framework, population structure is inferred by a combination of the methods described above and then interpreted as reflecting the history of the species, for example as resulting from past range contractions and expansions in response to climate change. Common questions are the identification of refugial areas, the source for (re)colonization of other areas and the distinction between old vicariance and recent dispersal. In addition to looking at the distribution of genetic diversity (assumed to be higher in refugial areas, but also in meeting zones), the distribution of individual markers provides some information. Fragments exclusive to one population (or region) can be counted and a large number of such private fragments indicates old divergence (Schonswetter & Tribsch 2005). Rare markers are expected to accumulate in long-term isolated populations. In order to avoid setting an arbitrary threshold for rareness, Schonswetter & Tribsch (2005) suggested calculating a frequency down-weighed (DW) marker value equivalent to range-down-weighted species values in historical biogeography. For some areas known to have been colonized recently, like areas extensively glaciated during the Pleistocene (e.g. Scandinavia), the source for recolonization has been identified by assignment tests (e.g. Skrede et al. 2006). Because of the lack of an appropriate mutation model, statistical phylogeographical methods based on coalescent simulations (Knowles 2004; Mallet 2005) have not been applied to AFLPs. It is also very difficult to suggest a time frame for processes identified exclusively on the basis of AFLP data, which limits the conclusions which can be drawn from phylogeographical studies restricted to this one marker type.

Identification of hybrid individuals

The identification of hybrid individuals and backcrosses between genetically distinct species or populations is important in many biological investigations addressing a broad range of topics including speciation, hybrid zones and conservation biology (e.g. Mallet 2005). In addition to this individual level, hybridization can be studied in a phylogenetic framework, addressing the role of historical hybridization in the formation of the gene pool of a species (e.g. Guo et al. 2005; Paun et al. 2006). Because AFLPs allow generating a large number of markers distributed throughout the genome, they are a useful tool to study hybridization both as current admixture and historical introgression (e.g. Bensch et al. 2002b). However, because our review focuses on studies of individuals and populations, we will not discuss the case of hybrid species.

Different approaches exist to identify hybrids in AFLP data sets. Analyses can be based on a set of ‘diagnostic’ markers, chosen to be fixed or to show clear differences in frequency between the parent groups (e.g. Bensch et al. 2002b), or on total data sets of randomly generated markers (e.g. Albert et al. 2006). Because diagnostic markers may be difficult to find in closely related species, the second approach is more common. Several statistical methods to identify hybrids are related to assignment tests (Manel et al. 2005). These methods have been developed for codominant data but were modified to be applied to dominant data. In a first step, pure individuals of the parent species are identified morphologically or genetically (e.g. using mtDNA). Using the AFLP data, unknown individuals can then be assigned to these two groups. Hybrids are identified as individuals with a small difference in likelihood between the parental species (Bensch et al. 2002b; Helbig et al. 2005). Alternatively, artificial hybrid genotypes can be simulated to create additional gene pools to which individuals can be assigned (Congiu et al. 2001). The software aflpop (Duchesne & Bernatchez 2002) performs assignment tests based on band frequencies (Table 1). It also allows simulating each of the following categories of hybrids: F1 hybrids, backcrosses to each parental species and F2 hybrids. Band frequencies in the hybrid gene pools are calculated from observed frequencies in the parental species assuming Hardy–Weinberg equilibrium. Given a sufficient power in the data, the status of hybrids can thus be analysed in detail. It is recommended to investigate the power of the data to distinguish these different categories using the simulation procedure implemented in aflpop (Duchesne & Bernatchez 2002).

In the case of two known and distinct parental gene pools, it is possible to estimate a hybrid index, which is an estimate of the proportion of the alleles of an individual that were inherited from each parental species (Rieseberg et al. 1999; Rogers et al. 2001). For nondiagnostic markers, such an index can be estimated both for dominant and codominant data using a maximum-likelihood approach (Rieseberg et al. 1999; Buerkle 2005).

The software structure 2.2 (Falush et al. in press; see Population Structure section) allows implementing an admixture model also for dominant data and can thus be used to address hybridization. Under the admixture model, the proportion of ancestry of each individual in each cluster or population is estimated by its posterior probability. Hybrids are identified as individuals with ancestry in two different clusters. If information about the relative position of the markers is available, the linkage model can also be used. It would be particularly appropriate in the case of a large number of markers. Anderson & Thompson (2002) developed a specific model-based Bayesian method for identifying hybrids, which is implemented in the program newhybrids. This method computes the posterior probability that an individual in the sample belongs to each of several different hybrid categories. Given sufficient data, it allows distinguishing between F1 hybrids, different backcrosses or later generation hybrids (insufficient data lead to a lack of resolution). It does not require that parental populations are sampled separately, thus avoiding the sometimes difficult step of identifying pure individuals. Dominant data are treated explicitly in newhybrids using an approach similar to that used in structure 2.2 (Falush et al. in press). An extra layer of latent variables is added to the model. Each marker is modelled as a biallelic locus and the individual genotypes are treated as latent variables that cannot be observed directly, but are estimated together with the rest of the model variables in order to fit the observed data (i.e. the dominant phenotypes; E. Anderson, personal communication). The advantage of structure or newhybrids over frequentist assignment tests is that these programs can identify hybrids also without reference samples of ‘pure’ genotypes. In addition, both of them treat dominant data explicitly and incorporate the incertitude about the true genotypes into the model.

More descriptive approaches, such as principal coordinate analysis (PCO, e.g. Helbig et al. 2005) or neighbour-joining trees (e.g. Congiu et al. 2001) are also informative. Hybrid individuals are identified on the diagrams from their intermediate position between the clusters of the parent species. It is important to note, however, that tree-based analyses are per definition not well adapted to investigate hybridization, as hybridization introduces reticulation. Tree-based analyses are thus bound to produce ‘wrong’ or ambiguous results for AFLP data sets including hybrids.

Example. Albert et al. (2006) studied the dynamics of introgression between the American and European eels genotyping 1127 individuals at 373 AFLP loci. They used the simulation option of aflpop to investigate the power of their data to discriminate between different categories of hybrids. As the probability of erroneous assignment was relatively high between backcrosses and F2 hybrids, these two categories were combined to a pool of later generation hybrids. Thus, individuals were classified either as pure American or European eels, F1 or later generation hybrids. Hybrids were identified mainly in Iceland. As a second approach, Albert et al. (2006) used structure 2.2. They ran an analysis assuming two genetic clusters. Based on the 90% posterior probability interval of the admixture value, individuals were assigned to four possible categories: pure if their probability interval overlapped with 0 or 1, F1 hybrid if their probability interval overlapped with 0.5, but not with 0 or 1, and later generation hybrid if their probability interval did not overlap with either 0, 0.5 or 1. The results of this approach were in agreement with those from aflpop for individuals with pure European origin and F1 individuals; however, structure identified considerably less later generation hybrids than aflpop (34 vs. 180; V. Albert, personal communication). At last, they compared the results from structure with those obtained from newhybrids using four categories of hybrids (distinguishing backcrosses and F2 hybrids). The results were largely congruent with 95% of 1127 assignments being identical. The largest discrepancy in the results was thus between the band-based approach of aflpop and the two allele-frequency based Bayesian approaches.

Detection of markers associated with phenotype

AFLPs are a tool of choice when it comes to unravel the genetic architecture of complex traits because they are particularly suitable to the screening of basically any genome, at low cost and effort (Blears et al. 1998; Mueller & Wolfenbarger 1999; Bensch & Akesson 2005). As a result, the AFLP technique is popular in quantitative trait loci (QTL) analyses or linkage studies (see for example Hawthorne 2001; Verhoeven et al. 2004; Rogers & Bernatchez 2005; Assunção et al. 2006; Gardner & Latta 2006). Phenotypic information is central in these two approaches, that aim at detecting statistical associations between the genotype at a given locus and the phenotypic value of the studied trait under a quantitative genetic framework (Mackay 2001). QTL analysis requires manipulated pedigrees or hybridizing populations and its usefulness for natural populations remains to be evaluated. On the contrary, it is possible to build partial linkage maps or to saturate existing linkage maps using AFLPs on unmanipulated pedigrees or natural populations. The methodological advantages and drawbacks of AFLP genotyping in QTL and linkage analysis will not be addressed further here, since they have already inspired many exhaustive reviews (see for example Erickson et al. 2004; Gupta et al. 2005; Slate 2005).

Less documented is the application of anonymous markers to the search of genes or genomic regions under selection when prior knowledge about the advantageous trait is missing. So far, this has been carried out mainly under a population genomics framework. The underlying philosophy of population genomics consists in capturing the patterns of genetic diversity at the genome scale by genotyping many markers scattered in the genome of many individuals for several populations (Black et al. 2001). All the sampled loci are expected to be influenced similarly by the global evolutionary forces, such as genetic drift or gene flow. A few of them, however, may also be subject to locus-specific forces like selection and therefore display an unusual schema of genetic differentiation (Luikart et al. 2003; Storz 2005). Identifying loci presumably under selection thus comes down to detect those with a deviant behaviour, which are often referred to as ‘outlier loci’.

Because AFLP genotyping allows an accurate assessment of baseline levels of neutral genetic variation across the genome, it is particularly appropriate to the population genomics approach. This is well-demonstrated by the increasing number of articles reporting genome surveys using AFLPs, which revealed loci potentially involved in adaptation to biotic (Mealor & Hild 2006) or abiotic factors (Bonin et al. 2006; Jump et al. 2006), as well as loci associated with adaptive divergence between sympatric ecotypes, morphotypes or host races (Wilding et al. 2001; Campbell & Bernatchez 2004; Emelianov et al. 2004). Exploratory AFLP-based genome scans have also been carried out in parallel in closely related species, to disentangle the genetic basis of speciation (Scotti-Saintagne et al. 2004; Savolainen et al. 2006).

However, despite the enthusiastic use of AFLPs in population genomics, methodological tools to detect outlier loci among such markers are still scarce and not always well adapted. Only two programs designed for this purpose are currently available: winkles (originally wink; Wilding et al. 2001) and dfdist, modified from fdist (Beaumont & Nichols 1996) to deal with dominant data (see Table 1). Both of these programs simulate the theoretical null distribution of the genetic differentiation between two (winkles) or several populations (dfdist) conditional on the allelic frequency (winkles) or heterozygosity (dfdist) under specific models of neutral evolution. They thus rely on prior assumptions about population structure, size and history, migration and mutation rates, etc. that may introduce a bias in the results if these assumptions strongly deviate from the generally unknown empirical conditions (Storz 2005). In addition, FST values have to be estimated from allele frequencies (Box 1).

Several directions can be explored in order to enhance the potential of population genomics to successfully identify loci with a genuine selection signature by means of AFLP-based genome surveys. First, we would like to call for a proper validation of the outlier detection programs already existing for AFLP data, in terms of power and robustness. In this respect, particular attention has to be paid to the confounding effects of demography that can create fake selection footprints (Akey et al. 2004). Second, more effort is needed to expand the range of methods capable to handle dominant binary data. It would be especially profitable to design methods implementing various demographic scenarios and/or examining different population parameters (FST, FIS, excess in homozygosity, etc.; Luikart et al. 2003). Indeed, such parameters are not all equally sensitive to population history (Nielsen 2005). Third, it is time to initiate a global reflection on statistical significance thresholds to be used in population genomics. Conducting multiple statistical tests indeed goes together with an increased probability of making type-I errors, which is traditionally controlled by adopting the Bonferroni correction. However, this procedure is now more and more criticized because it greatly reduces the statistical power of the analyses. Recently, some alternative methods were implemented to control the false discovery rate (FDR) while preserving a satisfactory power (Storey & Tibshirani 2003; Narum 2006). Fourth, the construction of realistic mutation models for AFLP data would also allow a substantial refinement to the current analysis means.

When investigating the genetic basis of adaptation without any phenotypic information, a promising alternative to population genomics may be embodied by regression models such as logistic regression, which is a band-based approach. Logistic regression describes the association between a qualitative response variable following a binomial distribution [B(n,p), where n is the number of Bernoulli trials and p is the probability of success] and one or more explanatory variables, assuming a logit link [log(p/(1 − p)] (McCullagh & Nelder 1989). Such a regression is perfectly adapted to the analysis of the relationship between an AFLP marker (n = 1) with two possible states (band presence or absence with p as the probability of band presence) for each individual, and an environmental variable (e.g. mean temperature, concentration in nutrients, luminosity, probability of predation, etc.). The likelihood ratio (or G-statistic) and/or the Wald test (Hosmer & Lemeshow 2000) can then be used to know if the examined association is significant, that is, if the model with the studied variable fits the observed distribution better than a model considering only a constant. Logistic regression is commonly applied in ecology, for example to investigate the best combination of explanatory (i.e. environmental) variables that explain the presence or absence of a species (Manel et al. 1999). On the opposite, it is currently underexploited in population genetics to search for adaptive loci (but see Joost & Bonin in press; Joost et al. in press), despite several significant advantages compared to the population genomics methods mentioned above. First, it works directly with the probability of occurrence of bands and not with allele frequencies, so it does not require any knowledge or assumption about FIS. Second, and this is a corollary of the previous advantage, logistic regression is an individual-based method free from the notion of population, as long as environmental data can be provided for each individual genotype. Third, it is able to specify which variable is coupled with the candidate locus, giving a valuable clue about the selective pressure at stake. Like other outlier detection method, however, logistic regression may highlight false-positives.

Example. Bonin et al. (2006) investigated adaptation along a gradient of altitude in the common frog (Rana temporaria), by means of a genome survey based on 392 AFLP loci. Using two different population genomics programs, they revealed eight strong candidate loci possibly under selection on the basis on their systematically high genetic differentiation between independent pairs of populations of different altitudes. Confirmation of this result is currently under way using other populations of the same geographical area, and seven of the identified loci were significantly associated to altitude in logistic regression analyses (Joost & Bonin in press). These promising results may trigger a fruitful joint application of logistic regression and population genomics methods in the quest for selected loci (Joost et al. in press).

Discussion and future directions

  1. Top of page
  2. Abstract
  3. Introduction
  4. Experimental design of AFLP studies
  5. Statistical methods in AFLP analysis
  6. Discussion and future directions
  7. Acknowledgements
  8. References

In this article, we focused on the statistical aspects of AFLP analysis and described methods available in the toolbox of molecular ecologists and evolutionists to assess genetic diversity, to identify population structure and potential hybrids, and to detect loci affecting phenotypes. These methods are of two kinds: the band-based methods, which are based on the direct study of band presences or absences in AFLP profiles; and the allele frequency-based methods, whose application is contingent upon the estimation of allelic frequencies within populations, and which are thus population-centred. Because of the dominant nature of AFLPs, these last methods require additional assumptions (i.e. Hardy–Weinberg equilibrium) or information about the population genotypic structure (FIS) to estimate allele frequencies.

Several valuable observations emerge from this review. First, there is no general recipe and no magical tool to extract information from AFLP data. Instead, one should (i) carefully adapt the experimental design to the goal of the study; (ii) favour specific and robust statistical tools; (iii) be aware about the underlying hypotheses and check their biological validity; and (iii), if possible, test both band-based and allele frequency-based methods to strengthen the results. Second, when using population-based methods, it appears that the sample size is a crucial parameter that greatly influences the accuracy of allelic frequency estimates. Therefore, we recommend granting special effort to the sampling, that is, collecting at least 30 individuals per population. If this is not feasible, we suggest favouring individual-based methods. Third, some methods mentioned here (e.g. structure 2.1) were originally conceived for codominant markers and can only handle AFLP data if these are recoded by adding a missing value. The consequences of such a coding still need to be properly evaluated. Fourth, as demonstrated by the example of logistic regression, the AFLP toolbox can be easily enriched by methodologies borrowed from other research fields, especially those designed to deal with binary data. Therefore, we would like to encourage the adoption and/or development of such promising methods in molecular ecology and evolution, together with the more traditional ones.

This review revealed another startling fact: very little is known about mutation processes in AFLPs, and in most statistical analyses mutation is ignored. Whereas this may be appropriate when working with related populations on short timescales (Excoffier & Heckel 2006), mutation is expected to have a non-negligible role in shaping genetic variation on longer timescales. Moreover, even if mutation is not totally ignored, the implemented mutation model is often the infinite-allele model with a single mutation rate (e.g. Mariette et al. 2002). This model assumes that any allele mutates at a given rate and that every mutation leads to a new allele, that is, an infinite number of alleles can be generated. The application of this model to AFLPs is debatable for two reasons. First, AFLP markers have only two alleles, not many; and second, it is not obvious that the presence allele is lost at the same rate than the absence allele. As a matter of fact, in phylogenetic reconstruction based on AFLPs, the probabilities of loosing or gaining a band are generally considered as asymmetrical (Koopman 2005). Mutation rates found in the literature for AFLPs are not particularly low and range from 10−6 in Gaudeul et al. (2004) to 10−4 in Wilding et al. (2001) and Campbell & Bernatchez (2004). It is thus time to initiate a thorough reflection about how mutation can precisely affect AFLP alleles and to integrate this knowledge in the existing statistical procedures.

In conclusion, in the last decade, the AFLP technique has proven to be a useful marker system, and hundreds of AFLP data sets have been produced for various species. Conversely, the statistical aspects specific to AFLP analysis are beginning to be addressed only now. For example, new methods are being explored to accurately estimate FIS directly from AFLP profiles, which would allow circumventing one of the major drawbacks of AFLP markers, that is, their dominance. An adequate mutation model for AFLP data would also allow taking advantage from the powerful approach of coalescent simulations. We thus predict that a new research phase has been reached, where more emphasis will be laid on AFLP data analysis to make the most of this helpful genotyping technique.

Acknowledgements

  1. Top of page
  2. Abstract
  3. Introduction
  4. Experimental design of AFLP studies
  5. Statistical methods in AFLP analysis
  6. Discussion and future directions
  7. Acknowledgements
  8. References

We thank P.B. Eidesen, M. Foll and other members of the LECA Journal Club for helpful comments on an earlier version of the manuscript. We also thank P.B. Eidesen and I.G. Alsos for providing some of the data sets analysed in Box 3. A.B. was funded by an Emergence grant from the Région Rhône-Alpes. D.E. was funded by the Research Council of Norway (grant 150322/720 to C. Brochmann). S.M. was funded by Fonds National de la Science (ACI IMPBIO).

References

  1. Top of page
  2. Abstract
  3. Introduction
  4. Experimental design of AFLP studies
  5. Statistical methods in AFLP analysis
  6. Discussion and future directions
  7. Acknowledgements
  8. References
  • Ajmone-Marsan P, Negrini R, Milanesi E et al . (2002) Genetic distances within and across cattle breeds as indicated by biallelic AFLP markers. Animal Genetics, 33, 280286.
  • Akey JM, Eberle MA, Rieder MJ et al . (2004) Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biology, 2, 15911599.
  • Albert V, Jonsson B, Bernatchez L (2006) Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Molecular Ecology, 15, 19031916.
  • Anderson M (2003) pco: A Fortran Computer Program for Principal Coordinate Analysis. Distributed by the Author. University of Auckland, New Zealand.
  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics, 160, 12171229.
  • Assunção AG, Pieper B, Vromans J et al . (2006) Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation. New Phytologist, 170, 2132.
  • Barbujani G, Oden NL, Sokal R (1989) Detecting regions of abrupt change in maps of biological variables. Systematic Zoology, 38, 376389.
  • Barluenga M, Stolting KN, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature, 439, 719723.
  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London. Series B, Biological Sciences, 263, 16191626.
  • Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology, 14, 28992914.
  • Bensch S, Akesson S, Irwin DE (2002a) The use of AFLP to find an informative SNP: genetic differences across a migratory divide in willow warblers. Molecular Ecology, 11, 23592366.
  • Bensch S, Helbig AJ, Salomon M, Seibold I (2002b) Amplified fragment length polymorphism analysis identifies hybrids between two subspecies of warblers. Molecular Ecology, 11, 473481.
  • Black WC, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annual Review of Entomology, 46, 441469.
  • Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. Journal of Industrial Microbiology and Biotechnology, 21, 99114.
  • Bonin A, Bellemain E, Bronken Eidesen P et al . (2004) How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13, 32613273.
  • Bonin A, Miaud C, Taberlet P, Pompanon F (2006) Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Molecular Biology and Evolution, 23, 773783.
  • Borowsky RL (2001) Estimating nucleotide diversity from random amplified polymorphic DNA and amplified fragment length polymorphism data. Molecular Phylogenetics and Evolution, 18, 143148.
  • Buerkle CA (2005) Maximum-likelihood estimation of a hybrid index based on molecular markers. Molecular Ecology Notes, 5, 684687.
  • Campbell D, Bernatchez L (2004) Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Molecular Biology and Evolution, 21, 945956.
  • Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Molecular Ecology, 12, 19791991.
  • De Casas RR, Besnard G, Schonswetter P, Balaguer L, Vargas P (2006) Extensive gene flow blurs phylogeographic but not phylogenetic signal in Olea europaea L. Theoretical and Applied Genetics, 113, 575583.
  • Cavers S, Degen B, Caron H et al . (2005) Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity, 95, 281289.
  • Charlesworth B (1998) Measure of divergence between populations and the effect of forces that reduce variability. Molecular Biology and Evolution, 15, 538543.
  • Clark AG, Lanigan CM (1993) Prospects for estimating nucleotide divergence with RAPDs. Molecular Biology and Evolution, 10, 10961111.
  • Congiu L, Dupanloup I, Patarnello T et al . (2001) Identification of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon. Molecular Ecology, 10, 23552359.
  • Conord C, Lempérière G, Taberlet P, Després L (2006) Genetic structure of the forest pest Hylobius abietis on conifer plantations at different spatial scales in Europe. Heredity, 97, 4655.
  • Corander J, Waldmann P, Silanpää J (2003) Bayesian analysis of genetic differentiation between populations. Genetics, 163, 367374.
  • Corander J, Waldmann P, Marttinen P, Sillanpää M (2004) baps2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics, 20, 23632369.
  • Corander J, Siren J, Arjas E (in press) Bayesian spatial modelling of genetic population structure. Computational Statistics.
  • Crida A, Manel S (in press) wombsoft: a r package that implements the Wombling method to identify genetic boundary. Molecular Ecology Notes.
  • Degen B, Petit R, Kremer A (2001) sgs-Spatial genetic software: a computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. Journal of Heredity, 92, 447448.
  • Després L, Loriot S, Gaudeul M (2002) Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Molecular Ecology, 11, 22372347.
  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology, 26, 297302.
  • Duarte JM, Dos Santos JB, Melo LC (1999) Comparison of similarity coefficients based on RAPD markers in the common bean. Genetics and Molecular Biology, 22, 427432.
  • Duchesne P, Bernatchez L (2002) aflpop: a computer program for simulated and real populations allocation, based on AFLP data. Molecular Ecology Notes, 2, 380383.
  • Emelianov I, Marec F, Mallet J (2004) Genomic evidence for divergence with gene flow in host races of the larch budmoth. Proceedings of the Royal Society of London. Series B, Biological Sciences, 271, 97105.
  • Epperson B (2003) Geographical Genetics. Princeton University Press, Princeton, New Jersey.
  • Erickson DL, Fenster CB, Stenoien HK, Price D (2004) Quantitative trait locus analyses and the study of evolutionary process. Molecular Ecology, 13, 25052522.
  • Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nature Reviews Genetics, 7, 745758.
  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred for metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479491.
  • Falush D, Stephens M, Pritchard J (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 15671587.
  • Falush D, Stephens M, Pritchard J (in press) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes.
  • Felsenstein J (2004) phylip (Phylogeny Inference Package). Distributed by the Author. Department of Genome Sciences, University of Washington, Seattle.
  • Foulley JL, Van Schriek MGM, Alderson L et al . (2006) Genetic diversity analysis using lowly polymorphic dominant markers: the example of AFLP in pigs. Journal of Heredity, 97, 244252.
  • François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics, 174, 805816.
  • Gardner KM, Latta RG (2006) Identifying loci under selection across contrasting environments in Avena barbata using quantitative trait locus mapping. Molecular Ecology, 15, 13211333.
  • Gaudeul M, Till-Bottraud I, Barjon F, Manel S (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity, 92, 508518.
  • Guillot G, Estoup A, Mortier F, Cosson J (2005) A spatial statistical model for landscape genetics. Genetics, 170, 12611280.
  • Guo YP, Saukel J, Mittermayr R, Ehrendorfer F (2005) AFLP analyses demonstrate genetic divergence, hybridization, and multiple polyploidization in the evolution of Achillea (Asteraceae-Anthemideae). New Phytologist, 166, 273289.
  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology, 57, 461485.
  • Van Haeringen WA, Den Bieman MG, Lankhorst AE, Van Lith HA, Van Zutphen LF (2002) Application of AFLP markers for QTL mapping in the rabbit. Genome, 45, 914921.
  • Hansen M, Kraft T, Christiansson M, Nilsson NO (1999) Evaluation of AFLP in Beta. Theoretical and Applied Genetics, 98, 845852.
  • Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Molecular Ecology, 12, 15771588.
  • Hardy OJ, Vekemans X (2002) spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2, 618620.
  • Hardy OJ, Maggia L, Bandou E et al . (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Molecular Ecology, 15, 559571.
  • Hawthorne DJ (2001) AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsa decemlineata: sex chromosomes and a pyrethroid-resistance candidate gene. Genetics, 158, 695700.
  • Helbig AJ, Seibold I, Kocum A et al . (2005) Genetic differentiation and hybridization between greater and lesser spotted eagles (Accipitriformes: Aquila clanga, A. pomarina). Journal of Ornithology, 146, 226234.
  • Hill WG, Weir BS (2004) Moment estimation of population diversity and genetic distance from data on recessive markers. Molecular Ecology, 13, 895908.
  • Hollingsworth PM, Ennos RA (2004) Neighbour-joining trees, dominant markers and population genetic structure. Heredity, 92, 490498.
  • Holsinger K (1999) Analysis of genetic diversity in geographically structured populations: a Bayesian perspective. Hereditas, 130, 245255.
  • Holsinger KE, Lewis PO, Dey DK (2002) A Bayesian approach to inferring population structure from dominant markers. Molecular Ecology, 11, 11571164.
  • Hosmer DW, Lemeshow S (2000) Applied Logistic Regression. John Wiley, New York.
  • Innan H, Terauchi R, Kahl G, Tajima F (1999) A method for estimating nucleotide diversity from AFLP data. Genetics, 151, 11571164.
  • Irwin D, Bensch S, Irwin J, Price T (2005) Speciation by distance in a ring species. Science, 307, 414415.
  • Isabel N, Beaulieu J, Thériault P, Bousquet J (1999) Direct evidence for biased gene diversity estimates from dominant random amplified polymorphic DNA (RAPD) fingerprints. Molecular Ecology, 8, 477483.
  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise Des Sciences Naturelles, 44, 223270.
  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research, 29, E25.
  • Joost S, Bonin A (in press) Spatial analysis to detect signatures of selection along a gradient of altitude in the common frog (Rana temporaria). Proceedings of the 5th European Colloquium on Theoretical and Quantitative Geography.
  • Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, Taberlet P (in press) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach of adaptation. Molecular Ecology.
  • Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Molecular Ecology, 15, 34693480.
  • Kis-Papo T, Kirzhner V, Wasser SP, Nevo E (2003) Evolution of genomic diversity and sex at extreme environments: fungal life under hypersaline Dead Sea stress. Proceedings of the National Academy of Sciences, USA, 100, 1497014975.
  • Knowles LL (2004) The burgeoning field of statistical phylogeography. Journal of Evolutionary Biology, 17, 110.
  • Kolliker R, Kraehenbuehl R, Boller B, Widmer F (2006) Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis. Systematic and Applied Microbiology, 29, 109119.
  • Koopman WJM (2005) Phylogenetic signal in AFLP data sets. Systematic Biology, 54, 197217.
  • Koopman WJM, Gort G (2004) Significance tests and weighted values for AFLP similarities, based on Arabidopsis in silico AFLP fragment length distributions. Genetics, 167, 19151928.
  • Kosman E (2003) Nei's gene diversity and the index of average differences are identical measures of diversity within populations. Plant Pathology, 52, 533535.
  • Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Molecular Ecology, 14, 415424.
  • Krauss SL (2000) Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Molecular Ecology, 9, 12411245.
  • Kremer A, Caron H, Cavers S et al . (2005) Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity, 95, 274280.
  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Reviews Genetics, 4, 981994.
  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3, 9199.
  • Mackay TF (2001) The genetic architecture of quantitative traits. Annual Review of Genetics, 303339.
  • Mallet J (2005) Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 20, 229237.
  • Manel S, Dias J, Ormerod S (1999) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology, 36, 734747.
  • Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends in Ecology & Evolution.
  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of genetic, morphologic and linguistic variation: how barriers can be detected by using Monmonier's algorithm. Human Biology, 76, 173190.
  • Mariac C, Robert T, Allinne C et al . (2006) Genetic diversity and gene flow among pearl millet crop/weed complex: a case study. Theoretical and Applied Genetics, 113, 10031014.
  • Mariette S, Chagne D, Lezier C et al . (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity, 86, 469479.
  • Mariette S, Le Corre V, Austerlitz F, Kremer A (2002) Sampling within the genome for measuring within-population diversity: trade-offs between markers. Molecular Ecology, 11, 11451156.
  • Mba C, Tohme J (2005) Use of AFLP markers in surveys of plant diversity. In: Molecular Evolution: Producing the Biochemical Data, Part B (eds ZimmerEA, RoalsonEH), pp. 177201. Academic Press, San Diego, California.
  • McCullagh P, Nelder J (1989) Generalized Linear Models, 2nd edn. Chapman & Hall, London.
  • McMillan AM, Bagley MJ, Jackson SA, Nacci DE (2006) Genetic diversity and structure of an estuarine fish (Fundulus heteroclitus) indigenous to sites associated with a highly contaminated urban harbor. Ecotoxicology, 15, 539548.
  • Mealor BA, Hild AL (2006) Potential selection in native grass populations by exotic invasion. Molecular Ecology, 15, 22912300.
  • Mechanda SM, Baum BR, Johnson DA, Arnason JT (2004) Sequence assessment of comigrating AFLP™ bands in Echinacea— implications for comparative biological studies. Genome, 47, 1525.
  • Mendelson TC, Shaw KL (2005) Use of AFLP markers in surveys of arthropod diversity. In: Molecular Evolution: Producing the Biochemical Data, Part B (eds ZimmerEA, RoalsonEH), pp. 161177. Academic Press, San Diego, California.
  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses, and advances. Trends in Plant Science, 12, 106117.
  • Miller MP (2005) Allele in space (ais): computer software for the joint analysis of interindividual spatial and genetic information. Journal of Heredity, 96, 722724.
  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants – salient statistical tools and considerations. Crop Science, 43, 12351248.
  • Monmonier M (1973) Maximum–difference barriers: an alternative numerical regionalization method. Geographical Analysis, 3, 245261.
  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends in Ecology & Evolution, 14, 389394.
  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation Genetics, 7, 783787.
  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA, 70, 33213323.
  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583590.
  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.
  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA, 76, 52695273.
  • Nielsen R (2005) Molecular signatures of natural selection. Annual Review of Genetics, 39, 197218.
  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13, 11431155.
  • O’Hanlon PC, Peakall R (2000) A simple method for the detection of size homoplasy among amplified fragment length polymorphism fragments. Molecular Ecology, 9, 815816.
  • Paetkau D, Slades R, Burdens M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13, 5565.
  • Paun O, Stuessy TF, Horandl E (2006) The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic Ranunculus cassubicus complex. New Phytologist, 171, 223236.
  • Peakall R, Smouse PE (2006) genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288295.
  • Polyakov A, Beharav A, Avivi A, Nevo E (2004) Mammalian microevolution in action: adaptive edaphic genomic divergence in blind subterranean mole-rats. Proceedings of the Royal Society of London. Series B, Biological Sciences, 271, S156S159.
  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics, 6, 847859.
  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945959.
  • Prochazka M, Walder K, Xia J (2001) AFLP fingerprinting of the human genome. Human Genetics, 108, 5965.
  • R Development Core Team (2004) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.
  • Raffl C, Schonswetter P, Erschbamer B (2006) ‘Sax-sess’— genetics of primary succession in a pioneer species on two parallel glacier forelands. Molecular Ecology, 15, 24332440.
  • Reif JC, Melchinger AE, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Science, 45, 17.
  • Rieseberg LH, Whitton J, Gardner K (1999) Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics, 152, 713727.
  • Ritland K (2005) Multilocus estimation of pairwise relatedness with dominant markers. Molecular Ecology, 14, 31573165.
  • Rivera-Ocasio E, Aide T, McMillan W (2006) The influence of spatial scale on the genetic structure of widespread tropical wetland tree, Pterocarpus officinalis (Fabaceae). Conservation Genetics, 7, 251266.
  • Rogers SM, Bernatchez L (2005) Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis). Molecular Ecology, 14, 351361.
  • Rogers SM, Campbell D, Baird SJE, Danzmann RG, Bernatchez L (2001) Combining the analyses of introgressive hybridisation and linkage mapping to investigate the genetic architecture of population divergence in the lake whitefish (Coregonus clupeaformis, Mitchill). Genetica, 111, 2541.
  • Rogers SM, Isabel N, Bernatchez L (2007) Linkage maps of the dwarf and normal lake whitefish (Coregonus clupeaformis) species complex and their hybrid reveal the genetic architecture of population divergence. Genetics, 175, 375398.
  • Rombauts S (2003) AFLPinSilico, simulating AFLP fingerprints. Bioinformatics, 19, 776777.
  • Rouppe van der Voort JNAM, Van Zandvoort O, Van Eck HJ et al . (1997) Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Molecular Genomics and Genetics, 255, 438447.
  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145, 12191228.
  • SanCristobal M, Chevalet C, Peleman J et al . (2006) Genetic diversity in European pigs utilizing amplified fragment length polymorphism markers. Animal Genetics, 37, 232238.
  • Savolainen V, Anstett MC, Lexer C et al . (2006) Sympatric speciation in palms on an oceanic island. Nature, 441, 210213.
  • Schonswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon, 54, 725732.
  • Schonswetter P, Tribsch A, Stehlik I, Niklfeld H (2004) Glacial history of high alpine Ranunculus glacialis (Ranunculaceae) in the European Alps in a comparative phylogeographical context. Biological Journal of the Linnean Society, 81, 183195.
  • Scotti-Saintagne C, Mariette S, Porth I et al . (2004) Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics, 168, 16151626.
  • Shan F, Clarke HC, Plummer JA, Yan G, Siddique KHM (2005) Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theoretical and Applied Genetics, 110, 381391.
  • Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal, 27, 379423 and 623656.
  • Simmons MP, Zhang LB, Webb CT, Müller K (2007) A penalty of using anonymous dominant markers (AFLPs, ISSRs, and RAPDs) for phylogenetic inference. Molecular Phylogenetics and Evolution, 42, 528542.
  • Singh M, Chabane K, Valkoun J, Blake T (2006) Optimum sample size for estimating gene diversity in wild wheat using AFLP markers. Genetic Resources and Crop Evolution, 53, 2333.
  • Skrede I, Eidesen PB, Portela RP, Brochmann C (2006) Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Molecular Ecology, 15, 18271840.
  • Slate J (2005) Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Molecular Ecology.
  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 14091438.
  • Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 5, 134.
  • Sork VL, Nason J, Campbell DR, Fernandez JF (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends in Ecology & Evolution, 14, 129224.
  • Stewart CN, Excoffier L (1996) Assessing population genetic structure and variability with RADP data: application to Vaccinium macrocarpon (American Cranberry). Journal of Evolutionary Biology, 9, 153171.
  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, USA, 100, 94409445.
  • Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Molecular Ecology, 14, 671688.
  • Tero N, Aspi J, Siikamäki P, Jäkäläniemi A (2005) Local genetic population structure in an endangered plant species, Silene tatarica (Caryophyllaceae). Heredity, 94, 478487.
  • Van de Peer Y, De Wachter R (1994) treecon for windows: a software package for the construction and drawing of evolutionary trees for the Microsoft windows environment. Computational and Applied Biosciences, 10, 569570.
  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology, 11, 139151.
  • Verhoeven KJ, Vanhala TK, Biere A, Nevo E, Van Damme JM (2004) The genetic basis of adaptive population differentiation: a quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats. Evolution, 58, 270283.
  • Vos P, Hagers R, Bleeker M et al . (1995) AFLP: new technique for DNA fingerprinting. Nucleic Acids Research, 23, 44074414.
  • Wang J (2004) Estimating pairwise relatedness from dominant genetic markers. Molecular Ecology, 13, 31693178.
  • Wang ZS, Baker AJ, Hill GE, Edwards SV (2003) Reconciling actual and inferred population histories in the house finch (Carpodacus mexicanus) by AFLP analysis. Evolution, 57, 28522864.
  • Weir B (1996) Genetic Data Analysis II. Sinauer & Associates, Massachusetts.
  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 13581370.
  • Whitlock MC, McCauley DE (1999) Indirect measure of gene flow and migration. Heredity, 82, 117125.
  • Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. Journal of Evolutionary Biology, 14, 611619.
  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 65316535.
  • Wolfe AD, Xiang QY, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Molecular Ecology, 7, 11071125.
  • Womble W (1951) Differential systematics. Science, 28, 315322.
  • Wu B, Liu N, Zhao H (2006) psmix: an r package for population structure inference via maximum likelihood method. BMC Bioinformatics, 7, 317326.
  • Yeh F, Boyle T (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 129, 157.
  • Zhivotovsky L (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Molecular Ecology, 8, 907913.
  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176183.

The authors have a long-standing experience in the production and analysis of AFLP data sets. A.B. is a postdoctoral fellow whose research focuses on understanding the genetic basis of adaptation in various biological models. D.E. is a postdoctoral researcher working now at the University of Tromsø (Norway) on the ecology and phylogeography of arctic animals and plants. S.M. is an assistant professor with a special interest in landscape genetics, i.e., the study of the interactions between landscape features and microevolutionary processes.