Male parentage in dependent-lineage populations of the harvester ant Pogonomyrmex barbatus

Authors


Sevan Suni, Fax: (650) 723 1826; E-mail: sssuni@stanford.edu

Abstract

We investigated the extent to which workers reproduce in a dependent-lineage population of the monogynous harvester ant Pogonomyrmex barbatus. Dependent-lineage populations contain two interbreeding, yet genetically distinct mitochondrial lineages, each associated with specific alleles at nuclear loci. Workers develop from matings between lineages, and queens develop from matings within lineages, so queens must mate with males of both lineages to produce daughter queens and workers. Males develop from unfertilized eggs and are haploid. Worker production of males could lead to male-mediated gene flow between the lineages if worker-produced males were reproductively capable. This could result in the loss of the dependent-lineage system, because its persistence depends on the maintenance of allelic differences between the lineages. To investigate the extent of worker reproduction in P. barbatus, we genotyped 19–20 males and workers from seven colonies, at seven microsatellite loci, and 1239 additional males at two microsatellite loci. Our methods were powerful enough to detect worker reproduction if workers produced more than 0.39% of males in the population. We detected no worker-produced males; all males appeared to be produced by queens. Thus, worker reproduction is sufficiently infrequent to have little impact on the dependent-lineage system. These results are consistent with predictions based on inclusive fitness theory because the effective queen mating frequency calculated from worker genotypes was 4.26, which is sufficiently high for workers to police those that attempt to reproduce.

Ancillary