• Batrachoseps attenuatus;
  • mtDNA;
  • phylogeography;
  • RAG-1;
  • Sacramento–San Joaquin Delta;
  • San Andreas Fault


Low-vagility species with deep evolutionary histories are key to our understanding of the biogeographical history of geologically complex areas, such as the west coast of North America. We present a detailed study of the phylogeography of the salamander Batrachoseps attenuatus (Caudata: Plethodontidae) using sequences of the mitochondrial gene cob from 178 individuals sampled from throughout the species’ range. Sequences of three other mitochondrial genes (16S, cox1, nad4) and a nuclear gene (RAG-1) were used to investigate the deeper evolutionary history of the species. We found high levels of genetic diversity and deep divergences within a mostly continuous distribution, with five genetically well-differentiated and geographically structured mitochondrial DNA clades. Significant association between geographical and genetic distances within these clades suggests demographic stability, whereas Fu's FS tests suggest demographic expansions in three of them. Mantel tests identify two biogeographical barriers, the San Andreas Fault and the Sacramento–San Joaquin Delta, as important in the diversification of lineages. The timing of the main splitting events between intraspecific lineages was estimated by applying relaxed molecular clock methods combining several mutation rates and a fossil calibration. The earliest splitting events are old (Pliocene/Miocene), with more recent (Pleistocene) subdivisions in some clades. Disjunct populations distributed along the western foothills of the Sierra Nevada colonized this area relatively recently from a single refugium east of San Francisco Bay. The combination of fine-scale, comprehensive sampling with phylogenetic, historical demographic and hypothesis-based tests allowed delineation of a complex biogeographical scenario with general implications for the study of codistributed taxa.