SEARCH

SEARCH BY CITATION

Keywords:

  • COI;
  • genetic diversity;
  • mtDNA;
  • phylogeography;
  • population genetics;
  • postglacial dispersal;
  • Unionidae

Abstract

Extrinsic and intrinsic forces combined shape the population structure of every species differently. Freshwater mussels are obligate parasites to a host fish during a juvenile stage (glochidia). Elliptio dilatata (ED) and Actinonaias ligamentina (AL) are co-occurring freshwater mussel taxa with similar North American distribution and share some potential host fish. Using mitochondrial DNA, we determined the genotypes of 190 + individuals from collection sites in at least two tributaries in the Lake Erie and Ohio River watersheds, along with the Ouachita and Strawberry rivers in the southeast. Both species had followed a stepping-stone model of dispersal, with greater pairwise genetic structure among collection sites of ED. Also, phylogeographical analysis for ED found significant geographical structuring of haplotype diversity. Overall, within-population variation increased significantly from north to south, with low genetic diversity in the Strawberry River. We calculated significant among-population structure for both species (ED: ΦST = 0.62, P < 0.001; AL: ΦST = 0.16, P < 0.001). Genetic analysis identified the Ouachita River as an area of significant reproductive isolation for both species. Results for AL indicated dispersal into northern areas from two genetically distinct glacial refugia, where results for ED indicated dispersal followed by low gene flow in northern areas. The conservation strategies for mussels that co-occur in the same ‘bed’ could be species specific. Species such as ED have management units on the population scale, where AL has a more homogeneous genetic structure across its range.