• fine-scale structure;
  • goose;
  • migration;
  • pairing;
  • sex-biased dispersal


Nonrandom dispersal has been recently advanced as a mechanism promoting fine-scale genetic differentiation in resident populations, yet how this applies to species with high rates of dispersal is still unclear. Using a migratory species considered a classical example of male-biased dispersal (the greater snow goose, Chen caerulescens atlantica), we documented a temporally stable fine-scale genetic clustering between spatially distinct rearing sites (5–30 km apart), where family aggregates shortly after hatching. Such genetic differentiation can only arise if, in both sexes, dispersal is restricted and nonrandom, a surprising result considering that pairing occurs among mixed flocks of birds more than 3000 km away from the breeding grounds. Fine-scale genetic structure may thus occur even in migratory species with high gene flow. We further show that looking for genetic structure based on nesting sites only may be misleading. Genetically distinct individuals that segregated into different rearing sites were in fact spatially mixed during nesting. These findings provide new, scale-dependent links between genetic structure, pairing, and dispersal and show the importance of sampling different stages of the breeding cycle in order to detect a spatial genetic structure.