Endemic and introduced haplotypes of Batrachochytrium dendrobatidis in Japanese amphibians: sink or source?



Matthew C. Fisher, Fax: +44 207 594 3693;
E-mail: matthew.fisher@imperial.ac.uk


The global emergence of the amphibian chytrid pathogen Batrachochytrium dendrobatidis (Bd) is one of the most compelling, and troubling, examples of a panzootic. Only discovered in 1998, Bd is now recognized as a proximate driver of global declines in amphibian diversity and is now widely acknowledged as a key threatening process for this ancient class of vertebrates. Moreover, Bd has become a member of a small group of highly virulent multihost pathogens that are known to have had effects on entire vertebrate communities and the ecosystem-level effects of Bd-driven amphibian declines are starting to emerge as a consequence of regional decreases in amphibian diversity. Despite the speed at which this species of aquatic chytrid has become a focus of research efforts, major questions still exist about where Bd originated, how it spreads, where it occurs and what are Bd’s effects on populations and species inhabiting different regions and biomes. In this issue, Goka et al. (2009) make an important contribution by publishing the first nationwide surveillance for Bd in Asia. Although previous data had suggested that amphibians in Asia are largely uninfected by Bd, these surveys were limited in their extent and few firm conclusions could be drawn about the true extent of infection. Goka et al. herein describe a systematic surveillance of Japan for both native and exotic species in the wild, as well as amphibians housed in captivity, using a Bd-specific nested PCR reaction on a sample of over 2600 amphibians. Their results show that Bd is widely prevalent in native species across Japan in at least three of the islands that make up the archipelago, proving for the first time that Asia harbours Bd.