SEARCH

SEARCH BY CITATION

Keywords:

  • conservation genetics;
  • habitat degradation;
  • population genetics;
  • reptiles

Abstract

Dispersal is a fundamental attribute of species in nature and shapes population dynamics, evolutionary trajectories and genetic variation across spatial and temporal scales. It is increasingly clear that landscape features have large impacts on dispersal patterns. Thus, understanding how individuals and species move through landscapes is essential for predicting impacts of landscape alterations. Information on dispersal patterns, however, is lacking for many taxa, particularly reptiles. Eastern foxsnakes (Mintoinus gloydi) are marsh and prairie specialists that avoid agricultural fields, but they have persisted across a fragmented region in southwestern Ontario and northern Ohio. Here, we combined habitat suitability modelling with population genetic analyses to infer how foxsnakes disperse through a habitat mosaic of natural and altered landscape features. Boundary regions between the eight genetic clusters, identified through assignment tests, were comprised of low suitability habitat (e.g. agricultural fields). Island populations were grouped into a single genetic cluster, and comparatively low FST values between island and mainland populations suggest open water presents less of a barrier than nonsuitable terrestrial habitat. Isolation by resistance and least-cost path analysis produced similar results with matrices of pairwise individual genetic distance significantly more correlated to matrices of resistance values derived from habitat suitability than models with an undifferentiated landscape. Spatial autocorrelation results matched better with assignment results when incorporating resistance values rather than straight-line distances. All analyses used in our study produced similar results suggesting that habitat degradation limits dispersal for foxsnakes, which has had a strong effect on the genetic population structure across this region.