Get access

Wolbachia-mediated persistence of mtDNA from a potentially extinct species

Authors


Kelly A. Dyer, E-mail: kdyer@uga.edu;
John Jaenike, E-mail: john.jaenike@rochester.edu

Abstract

Drosophila quinaria is polymorphic for infection with Wolbachia, a maternally transmitted endosymbiont. Wolbachia-infected individuals carry mtDNA that is only distantly related to the mtDNA of uninfected individuals, and the clade encompassing all mtDNA haplotypes within D. quinaria also includes the mtDNA of several other species of Drosophila. Nuclear gene variation reveals no difference between the Wolbachia-infected and uninfected individuals of D. quinaria, indicating that they all belong to the same interbreeding biological species. We suggest that the Wolbachia and the mtDNA with which it is associated were derived via interspecific hybridization and introgression. The sequences in the Wolbachia and the associated mtDNA are ≥6% divergent from those of any known Drosophila species. Thus, in spite of nearly complete species sampling, the sequences from which these mitochondria were derived remain unknown, raising the possibility that the donor species is extinct. The association between Wolbachia infection and mtDNA type within D. quinaria suggests that Wolbachia may be required for the continued persistence of the mtDNA from an otherwise extinct Drosophila species. We hypothesize that pathogen-protective effects conferred by Wolbachia operate in a negative frequency-dependent manner, thus bringing about a stable polymorphism for Wolbachia infection.

Get access to the full text of this article

Ancillary