Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming’s lucky fungus


Daniel A. Henk. Fax: +442075943693; E-mail: d.henk@imperial.ac.uk


Eighty years ago, Alexander Fleming described the antibiotic effects of a fungus that had contaminated his bacterial culture, kick starting the antimicrobial revolution. The fungus was later ascribed to a putatively globally distributed asexual species, Penicillium chrysogenum. Recently, the species has been shown to be genetically diverse, and possess mating-type genes. Here, phylogenetic and population genetic analyses show that this apparently ubiquitous fungus is actually composed of at least two genetically distinct species with only slight differences detected in physiology. We found each species in air and dust samples collected in and around St Mary’s Hospital where Fleming worked. Genotyping of 30 markers across the genome showed that preserved fungal material from Fleming’s laboratory was nearly identical to derived strains currently in culture collections and in the same distinct species as a wild progenitor strain of current penicillin producing industrial strains rather than the type species P. chrysogenum. Global samples of the two most common species were found to possess mating-type genes in a near 1:1 ratio, and show evidence of recombination with little geographic population subdivision evident. However, no hybridization was detected between the species despite an estimated time of divergence of less than 1 MYA. Growth studies showed significant interspecific inhibition by P. chrysogenum of the other common species, suggesting that competition may facilitate species maintenance despite globally overlapping distributions. Results highlight under-recognized diversity even among the best-known fungal groups and the potential for speciation despite overlapping distribution.