Get access

Evidence for genetic differentiation and variable recombination rates among Dutch populations of the opportunistic human pathogen Aspergillus fumigatus

Authors

  • CORNÉ H. W. KLAASSEN,

    1. Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Weg Door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands
    Search for more papers by this author
    • These authors contributed equally to this work.

  • JOHN G. GIBBONS,

    1. Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
    Search for more papers by this author
    • These authors contributed equally to this work.

  • NATALIE D. FEDOROVA,

    1. J Craig Venter Institute, Rockville, MD, USA
    Search for more papers by this author
  • JACQUES F. MEIS,

    1. Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Weg Door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands
    2. Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
    Search for more papers by this author
  • ANTONIS ROKAS

    1. Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
    Search for more papers by this author

Corné H. W. Klaassen, Fax: +31 243657516; E-mail: c.klaassen@cwz.nl

Abstract

As the frequency of antifungal drug resistance continues to increase, understanding the genetic structure of fungal populations, where resistant isolates have emerged and spread, is of major importance. Aspergillus fumigatus is an ubiquitously distributed fungus and the primary causative agent of invasive aspergillosis (IA), a potentially lethal infection in immunocompromised individuals. In the last few years, an increasing number of A. fumigatus isolates has evolved resistance to triazoles, the primary drugs for treating IA infections. In most isolates, this multiple-triazole-resistance (MTR) phenotype is caused by mutations in the cyp51A gene, which encodes the protein targeted by the triazoles. We investigated the genetic differentiation and reproductive mode of A. fumigatus in the Netherlands, the country where the MTR phenotype probably originated, to determine their role in facilitating the emergence and distribution of resistance genotypes. Using 20 genome-wide neutral markers, we genotyped 255 Dutch isolates including 25 isolates with the MTR phenotype. In contrast to previous reports, our results show that Dutch A. fumigatus genotypes are genetically differentiated into five distinct populations. Four of the five populations show significant linkage disequilibrium, indicative of an asexual reproductive mode, whereas the fifth population is in linkage equilibrium, indicative of a sexual reproductive mode. Notably, the observed genetic differentiation among Dutch isolates does not correlate with geography, although all isolates with the MTR phenotype nest within a single, predominantly asexual, population. These results suggest that both reproductive mode and genetic differentiation contribute to the structure of Dutch A. fumigatus populations and are probably shaping the evolutionary dynamics of drug resistance in this potentially deadly pathogen.

Get access to the full text of this article

Ancillary