Get access
Advertisement

Differential effects of landscape-level environmental features on genetic structure in three codistributed tree species in Central America

Authors


Correspondence: Monica F. Poelchau, Fax: 202 687 5662; E-mail: mfp33@georgetown.edu

Abstract

Landscape genetic studies use spatially explicit population genetic information to determine the physical and environmental causes of population genetic structure on regional scales. Comparative studies that identify common barriers to gene flow across multiple species within a community are important to both understand the evolutionary trajectories of populations and prioritize habitat conservation. Here, we use a comparative landscape genetic approach to ask whether gradients in temperature or precipitation seasonality structure genetic variation across three codistributed tree species in Central America, or whether a simpler (geographic distance) or more complex, species-specific environmental niche model is necessary to individually explain population genetic structure. Using descriptive statistics and causal modelling, we find that different factors best explain genetic distance in each of the three species: environmental niche distance in Bursera simaruba, geographic distance in Ficus insipida and historical barriers to gene flow or cryptic reproductive barriers for Brosimum alicastrum. This study confirms suggestions from previous studies of Central American tree species that imply that population genetic structure of trees in this region is determined by complex interactions of both historical and current barriers to gene flow.

Get access to the full text of this article

Ancillary