SEARCH

SEARCH BY CITATION

References

  • Antelmann, H., Tjalsma, H., Voigt, B., Ohlmeier, S., Bron, S., Van Dijl, J.M., and Hecker, M. (2001) A proteomic view on genome-based signal peptide predictions. Genome Res 0: 14841502.
  • Autret, N., Dubail, I., Trieu-Cuot, P., Berche, P., and Charbit, A. (2001) Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect Immun 69: 20542065.
  • Bairl, A., and Muller, P. (1998) A second gene for type I signal peptidase in Bradyrhizobium japonicum, sipF, is located near genes involved in RNA processing and cell division. Mol Gen Genet 260: 346356.
  • Bolhuis, A., Sorokin, A., Azevedo, V., Ehrlich, S.D., Braun, P.G., De Jong, A., et al. (1996) Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Mol Microbiol 22: 605618.
  • Bron, S., Bolhuis, A., Tjalsma, H., Holsappel, S., Venema, G., and Van Dijl, J.M. (1998) Protein secretion and possible roles for multiple signal peptidases for precursor processing in bacilli. J Biotechnol 64: 313.
  • Cabanes, D., Dehoux, P., Dussurget, O., Frangeul, L., and Cossart, P. (2002) Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 10: 238245.
  • Chu, H.H., Hoang, V., Kreutzmann, P., Hofemeister, B., Melzer, M., and Hofemeister, J. (2002) Identification and properties of type I-signal peptidases of Bacillus amyloliquefaciens. Eur J Biochem 269: 458469.
  • Cossart, P., and Bierne, H. (2001) The use of host cell machinery in the pathogenesis of Listeria monocytogenes. Curr Opin Immunol 13: 96103.
  • Cregg, K.M., Wilding, I., and Black, M.T. (1996) Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase from Staphylococcus aureus. J Bacteriol 178: 57125718.
  • De Chastellier, C., and Berche, P. (1994) Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect Immun 62: 543553.
  • Van Dijl, J.M., De Jong, A., Vehmaanpera, J., Venema, G., and Bron, S. (1992) Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11: 28192828.
  • Van Dijl, J.M., De Jong, A., Venema, G., and Bron, S. (1995) Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis. Structural and functional similarities with LexA-like proteases. J Biol Chem 270: 36113618.
  • Dramsi, S., Biswas, I., Maguin, E., Braun, L., Mastroeni, P., and Cossart, P. (1995) Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol 16: 251261.
  • Erdenlig, S., Ainsworth, A.J., and Austin, F.W. (1999) Production of monoclonal antibodies to Listeria monocytogenes and their application to determine the virulence of isolates from channel catfish. Appl Environ Microbiol 65: 28272832.
  • Farber, J.M., and Peterkin, P.I. (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55: 476511.
  • Gaillard, J.L., Berche, P., Mounier, J., Richard, S., and Sansonetti, P. (1987) In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55: 28222829.
  • Gaillard, J.L., Berche, P., Frehel, C., Gouin, E., and Cossart, P. (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65: 11271141.
  • Gaillard, J.L., Jaubert, F., and Berche, P. (1996) The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J Exp Med 183: 359369.
  • Gaillot, O., Pellegrini, E., Bregenholt, S., Nair, S., and Berche, P. (2000) The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol Microbiol 35: 12861294.
  • Garandeau, C., Reglier-Poupet, H., Dubail, I., Beretti, J.L., Berche, P., and Charbit, A. (2002) The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect Immun 70: 13821390.
  • Geukens, N., Parro, V., Rivas, L.A., Mellado, R.P., and Anné, J. (2001) Functional analysis of the Strptomyces lividans type I signal peptidases. Mol Gen Genet 176: 377380.
  • Gilbert, M., Morosoli, R., Shareck, F., and Kluepfel, D. (1995) Production and secretion of proteins by Streptomycetes. Crit Rev Biotechnol 15: 1339.
  • Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., et al. (2001) Comparative genomics of Listeria species. Science 294: 849852.
  • Guzman, C.A., Rohde, M., Chakraborty, T., Domann, E., Hudel, M., Wehland, J., and Timmis, K.N. (1995) Interaction of Listeria monocytogenes with mouse dendritic cells. Infect Immun 63: 36653673.
  • Hoang, V., and Hofemeister, J. (1995) Bacillus amyloliquefaciens possesses a second type I signal peptidase with extensive sequence similarity to other Bacillus SPases. Biochim Biophys Acta 1269: 6468.
  • Klenk, H.P., Clayton, R.A., Tomb, J.F., White, O., Nelson, K.E., Ketchum, K.A., et al. (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364370.
  • Kurioka, S., and Matsuda, M. (1976) Phospholipase C assay using p-nitrophenylphosphoryl-choline together with sorbitol and its application to studying the metal and detergent requirement of the enzyme. Anal Biochem 75: 281289.
  • Lety, M.A., Frehel, C., Dubail, I., Beretti, J.L., Kayal, S., Berche, P., and Charbit, A. (2001) Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence of Listeria monocytogenes. Mol Microbiol 39: 11241140.
  • Lety, M.A., Frehel, C., Berche, P., and Charbit, A. (2002) Critical role of the N-terminal residues of listeriolysin O in phagosomal escape and virulence of Listeria monocytogenes. Mol Microbiol 46: 367379.
  • Lingnau, A., Domann, E., Hudel, M., Bock, M., Nichterlein, T., Wehland, J., and Chakraborty, T. (1995) Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and – independent mechanisms. Infect Immun 63: 38963903.
  • Mackaness, G.B. (1962) Cellular resistance to infection. J Exp Med 116: 381406.
  • Meijer, W.J., De Jong, A., Bea, G., Wisman, A., Tjalsma, H., Venema, G., et al. (1995) The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol Microbiol 17: 621631.
  • Mengaud, J., Lecuit, M., Lebrun, M., Nato, F., Mazie, J.C., and Cossart, P. (1996) Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect Immun 64: 54305433.
  • Muller, P., Ahrens, K., Keller, T., and Klaucke, A. (1995) A TnphoA insertion within the Bradyrhizobium japonicum sipS gene, homologous to prokaryotic signal peptidases, results in extensive changes in the expression of PBM-specific nodulins of infected soybean (Glycine max) cells. Mol Microbiol 18: 831840.
  • Nair, S., Frehel, C., Nguyen, L., Escuyer, V., and Berche, P. (1999) ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes. Mol Microbiol 31: 185196.
  • Paetzel, M., Dalbey, R.E., and Strynadka, N.C. (1998) Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 396: 186190.
  • Paetzel, M., Dalbey, R.E., and Strynadka, N.C. (2000) The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Pharmacol Ther 87: 2749.
  • Paetzel, M., Dalbey, R.E., and Strynadka, N.C. (2002) Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser-Lys dyad mechanism. J Biol Chem 277: 95129519.
  • Palacin, A., Parro, V., Geukens, N., Anne, J., and Mellado, R.P. (2002) SipY is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol 184: 48754880.
  • Park, S.F., and Stewart, G.S. (1990) High efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94: 129132.
  • Parro, V., Schacht, S., Anne, J., and Mellado, R.P. (1999) Four genes encoding different type I signal peptidases are organized in a cluster in Streptomyces lividans TK21. Microbiology 145: 22552263.
  • Poyart, C., Abachin, E., Razafimanantsoa, I., and Berche, P. (1993) The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect Immun 61: 15761580.
  • Poyart-Salmeron, C., Trieu-Cuot, P., Carlier, C., MacGowan, A., McLauchlin, J., and Courvalin, P. (1992) Genetic basis of tetracycline resistance in clinical isolates of Listeria monocytogenes. Antimicrob Agents Chemother 36: 463466.
  • Pugsley, A.P., and Possot, O. (1993) The general secretory pathway of Klebsiella oxytoca: no evidence for relocalization or assembly of pilin-like PulG protein into a multiprotein complex. Mol Microbiol 10: 665674.
  • Réglier-Poupet, H., Frehel, C., Dubail, I., Beretti, J.L., Berche, P., Charbit, A., and Raynaud, C. (2003) Maturation of lipoproteins by type II signal peptidase is required for phagosomal escape of Listeria monocytogenes. J Biol Chem 278: 4946949477.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Expression of cloned genes in Escherichia coli. In Molecular Cloning. A Laboratory Manual, Vol. 3. Nolan, C., (ed.). Cold Spring Harbour, New York: Cold Spring Harbour Laboratory Press, pp. 17.3717.41.
  • Tjalsma, H., Noback, M.A., Bron, S., Venema, G., Yamane, K., and Van Dijl, J.M. (1997) Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. Constitutive and temporally controlled expression of different sip genes. J Biol Chem 272: 2598325992.
  • Tjalsma, H., Bolhuis, A., Van Roosmalen, M.L., Wiegert, T., Schumann, W., Broekhuizen, C.P., et al. (1998) Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev 12: 23182331.
  • Tjalsma, H., Stover, A.G., Driks, A., Venema, G., Bron, S., and Van Dijl, J.M. (2000) Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis. J Biol Chem 275: 2510225108.
  • Vazquez-Boland, J.A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., and Gonzalez-Zorn, B. (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14: 584640.
  • Van Wely, K.H., Swaving, J., Freudl, R., and Driessen, A.J. (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25: 437454.
  • White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., et al. (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 15711557.
  • Wood, S., Maroushek, N., and Czuprynski, C.J. (1993) Multiplication of Listeria monocytogenes in a murine hepatocyte cell line. Infect Immun 61: 30683072.