SEARCH

SEARCH BY CITATION

References

  • Amend, J.P., and Shock, E.L. (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol Rev 25: 175243.
  • Anemüller, S., and Schäfer, G. (1990) Cytochrome aa3 from Sulfolobus acidocaldarius a single-subunit, quinol-oxidizing archaebacterial terminal oxidase. Eur J Biochem 191: 297305.
  • Anemüller, S., Schmidt, C.L., Pacheco, I., Schäfer, G., and Teixeira, M. (1994) A cytochrome aa3-type quinol oxidase from Desulfurolobus ambivalens, the most acidophilic archaeon. FEMS Microbiol Lett 117: 275280.
  • Dawson, R.M.C., Elliott, D.C., Elliot, W.H., and Jones, K.M. (1986) Data for Biochemical Research. Oxford: Clarendon Press, p. 427.
  • Fisher, N., and Rich, P.R. (2000) A motif for quinone binding sites in respiratory and photosynthetic systems. J Mol Biol 296: 11531162.
  • Friedrich, C.G. (1998) Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39: 235289.
  • Friedrich, C.G., Quentmeier, A., Bardischewsky, F., Rother, D., Kraft, R., Kostka, S., and Prinz, H. (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182: 46774687.
  • Friedrich, C.G., Rother, D., Bardischewsky, F., Quentmeier, A., and Fischer, J. (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67: 28732882.
  • Fuchs, T., Huber, H., Burggraf, S., and Stetter, K.O. (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19: 5660.
  • Kelly, D.P. (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil Trans R Soc, London Ser B 298: 499528.
  • Kelly, D.P. (1988) Oxidation of sulphur compounds. In The Nitrogen and Sulphur Cycles. Cole, J.A., and Ferguson, S.J. (eds). Cambridge: Cambridge University Press, pp. 6598.
  • Kelly, D.P., Chambers, L.A., and Trudinger, P.A. (1969) Cyanolysis and spectrophotometric determination of Trithionate in mixtures with thiosulfate and tetrathionate. Anal Chem 41: 898901.
  • Kelly, D.P., Shergill, J.K., Lu, W.P., and Wood, A.P. (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71: 95107.
  • Kletzin, A. (1989) Coupled enzymic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacteriol 171: 16381643.
  • Kletzin, A. (1994) Sulfur oxidation and reduction in Archaea: Sulfur oxygenase/-reductase and hydrogenases from the extremely thermophilic and facultatively anaerobic Archaeon Desulfurolobus ambivalens. System Appl Microbiol 16: 534543.
  • Laska, S., Lottspeich, F., and Kletzin, A. (2003) Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology 149: 23572371.
  • Lemos, R.S., Gomes, C.M., and Teixeira, M. (2001) Acidianus ambivalens Complex II typifies a novel family of succinate dehydrogenases. Biochem Biophys Res Commun 281: 141150.
  • Meulenberg, R., Pronk, J.T., Hazeu, W., Van Dijken, J.P., Frank, J., Bos, P., and Kuenen, J.G. (1993) Purification and partial characterization of thiosulphate dehydrogenase from Thiobacillus acidophilus. J Gen Microbiol 139: 20332039.
  • Moll, R., and Schäfer, G. (1988) Chemiosmotic H+ cycling across the plasma membrane of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett 232: 359363.
  • Mukhopadhyaya, P.N., Deb, C., Lahiri, C., and Roy, P. (2000) A soxA gene, encoding a diheme cytochrome c, and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. J Bacteriol 182: 42784287.
  • Nakamura, K., Nakamura, M., Yoshikawa, H., and Amano, Y. (2001) Purification and properties of thiosulfate dehydrogenase from Acidithiobacillus thiooxidans JCM7814. Biosci Biotechnol Biochem 65: 102108.
  • Pronk, J.T., Meulenberg, R., Hazeu, W., Bos, P., and Kuenen, J.G. (1990) Oxidation of reduced inorganic sulfur-compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75: 293306.
  • Purschke, W.G., Schmidt, C.L., Petersen, A., and Schäfer, G. (1997) The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 179: 13441353.
  • Quentmeier, A., and Friedrich, C.G. (2001) The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett 503: 168172.
  • Rich, P.R. (1984) Electron and proton transfers through quinones and cytochrome bc complexes. Biochim Biophys Acta 768: 5379.
  • Rother, D., Henrich, H.J., Quentmeier, A., Bardischewsky, F., and Friedrich, C.G. (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183: 44994508.
  • Roy, A.B., and Trudinger, P.A. (1970) The Biochemistry of Inorganic Compounds of Sulphur. Cambridge: Cambridge University Press.
  • Schöheit, P., and Schäfer, T. (1995) Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11: 2657.
  • Schägger, H., and Von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamid gel electrophorese for the seperation of proteins in the range from 1 to 100 kDa. Anal Biochem 173: 201205.
  • Silver, M., and Lundgren, D.G. (1968) The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 46: 12151220.
  • Sreerama, N., and Woody, R.W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287: 252260.
  • Stetter, K.O., and Zillig, W. (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In The Bacteria, Vol. VIII:A Treatise on Structure and Function: Archaebacteria, Vol. 8. Woese, C.R., and Wolfe, R.S. (eds). Orlando, FL: Academic Press, pp. 85170.
  • Teixeira, M., Batista, R., Campos, A.P., Gomes, C., Mendes, J., Pacheco, I., et al. (1995) A seven-iron ferredoxin from the thermoacidophilic Desulfurolobus ambivalens. Eur J Biochem 227: 322327.
  • Thauer, R.K., Jungermann, K., and Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100180.
  • Thurl, S., Witke, W., Buhrow, I., and Schäfer, W. (1986) Different types of quinones from sulphur-dependant archaebacteria. Biol Chem 367: 191197.
  • Trincone, A., Lanzotti, V., Nicolaus, B., Zillig, W., Derosa, M., and Gambacorta, A. (1989) Comparative lipid-composition of aerobically and anaerobically grown Desulfurolobus ambivalens, an autotrophic thermophilic archaeobacterium. J Gen Microbiol 135: 27512757.
  • Trudinger, P.A. (1961a) Thiosulphate oxidation and cytochromes in Thiobacillus X: 1. Fractionation of bacterial extracts and properties of cytochromes. Biochem J 78: 673679.
  • Trudinger, P.A. (1961b) Thiosulphate oxidation and cytochromes in Thiobacillus X: 2. Thiosulphate-oxidizing enzyme. Biochem J 78: 680686.
  • Urich, T., Bandeiras, T.M., Leal, S.S., Rachel, R., Albrecht, T., Zimmermann, P., et al. (2004) The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre. Biochem J (in press).
  • Visser, J.M., De Jong, G.A.H., Robertson, L.A., and Kuenen, J.G. (1997) Purification and characterization of a periplasmic thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp. W5. Arch Microbiol 166: 372378.
  • Wardi, A.H., and Michos, G.A. (1972) Alcian blue staining of glycoproteins in acrylamide disc electrophoresis. Anal Biochem 49: 607609.
  • Watters, C. (1978) A one-step biuret assay for protein in the presence of detergent. Anal Biochem 88: 695698.
  • Xu, Y., Schoonen, M.A.A., Nordstrom, D.K., Cunningham, K.M., and Ball, J.W. (1998) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park. I. The origin of thiosulfate in hot spring waters. Geochim Cosmochim Acta 62: 37293743.
  • Xu, Y., Schoonen, M.A.A., Nordstrom, D.K., Cunningham, K.M., and Ball, J.W. (2000) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition of thiosulfate and polythionate in Cinder Pool. J Volcanol Geotherm Res 97: 407423.
  • Zehnder, A.J., and Wuhrmann, K. (1976) Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194: 11651166.
  • Zillig, W., Yeats, S., Holz, I., Böck, A., Gropp, F., Rettenberger, M., and Lutz, S. (1985) Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature 313: 789791.
  • Zillig, W., Yeats, S., Holz, I., Böck, A., Rettenberger, M., Gropp, F., and Simon, G. (1986) Desulfurolobus ambivalens gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing and reducing sulfur. System Appl Microbiol 8: 197203.
  • Zimmermann, P., Laska, S., and Kletzin, A. (1999) Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens. Arch Microbiol 172: 7682.