Traditional textbook representations of the prokaryotic cytoplasm show an amorphous, unstructured amalgamation of proteins and small molecules in which a randomly arranged chromosome resides. The development and application of a swathe of microscopic techniques over the last 10 years in particular, has shown this image of the microbial cell to be incorrect: the cytoplasm is highly structured with many proteins carrying out their assigned functions at specific subcellular locations; bacteria contain cytoskeletal elements including microtubule, actin and intermediate filament homologues; the chromosome is not randomly folded and is organized in such a way as to facilitate efficient segregation upon cell division. This review will concentrate on recent advances in our understanding of subcellular architecture and the techniques that have led to these discoveries.