Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds

Authors


E-mail dubnau@phri.org; Tel. (+1) 973 854 3400; Fax (+1) 973 854 3401.

Summary

ComEC is a putative channel protein for DNA uptake in Bacillus subtilis and other genetically transformable bacteria. Membrane topology studies suggest a model of ComEC as a multispanning membrane protein with seven transmembrane segments (TMSs), and possibly with one laterally inserted amphipathic helix. We show that ComEC contains an intramolecular disulphide bond in its N-terminal extracellular loop (between the residues C131 and C172), which is required for the stability of the protein, and is probably introduced by BdbDC, a pair of competence-induced oxidoreductase proteins. By in vitro cross-linking using native cysteine residues we show that ComEC forms an oligomer. The oligomerization surface includes a transmembrane segment, TMS-G, near the cytoplasmic C-terminus of ComEC.

Ancillary