Targeted deletion of Plasmodium knowlesi Duffy binding protein confirms its role in junction formation during invasion

Authors


E-mail cchitnis@icgeb.res.in; Tel. (+91) 112 618 7695; Fax (+91) 112 618 7695.

Summary

Red cell invasion by Plasmodium merozoites involves multiple steps such as attachment, apical reorientation, junction formation and entry into a parasitophorous vacuole. These steps are mediated by specific molecular interactions. P. vivax and the simian parasite P. knowlesi require interaction with the Duffy blood group antigen to invade human erythrocytes. P. vivax and P. knowlesi Duffy binding proteins (PvDBP and PkDBP), which bind the Duffy antigen during invasion, share regions of sequence homology and belong to a family of erythrocyte binding proteins (EBPs). By deletion of the gene that encodes PkDBP, we demonstrate that interaction of PkDBP with the Duffy antigen is absolutely necessary for invasion of human erythrocytes by P. knowlesi. Electron microscopy studies reveal that PkDBP knockout parasites are unable to form a junction with human erythrocytes. The interaction of PkDBP with the Duffy antigen is thus necessary for the critical step of junction formation during invasion. These studies provide support for development of intervention strategies that target EBPs to inhibit junction formation and block erythrocyte invasion by malaria parasites.

Ancillary