SEARCH

SEARCH BY CITATION

References

  • Albertyn, J., Hohmann, S., Thevelein, J.M., and Prior, B.A. (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14: 41354144.
  • Aleksenko, A., Nikolaev, I., Vinetski, Y., and Clutterbuck, A.J. (1996) Gene expression from replicating plasmids in Aspergillus nidulans. Mol Gen Genet 253: 242246.
  • Alex, L.A., Borkovich, K.A., and Simon, M.I. (1996) Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Natl Acad Sci USA 93: 34163421.
  • Appleyard, M.V.C.L., McPheat, W.L., and Stark, M.J.R. (2000) A novel ‘two-component’ protein containing histidine kinase and response regulator domains required for sporulation in Aspergillus nidulans. Curr Genet 37: 364372.
  • Boguslawski, G., and Polazzi, J.O. (1987) Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: similarity of the predicted polypeptide to protein kinases. Proc Natl Acad Sci USA 84: 58485852.
  • Brewster, J.L., De Valoir, T., Dwyer, N.D., Winter, E., and Gustin, M.C. (1993) An osmosensing signal transduction pathway in yeast. Science 259: 17601763.
  • Buck, V., Quinn, J., Soto Pino, T., Martin, H., Saldanha, J., Makino, K., et al. (2001) Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol Biol Cell 12: 407419.
  • Calera, J.A., and Calderone, R.A. (1999) Identification of a putative response regulator two-component phosphorelay gene (CaSSK1) from Candida albicans. Yeast 15: 12431254.
  • Calera, J.A., Zhao, X.J., and Calderone, R. (2000a) Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun 68: 518525.
  • Calera, J.A., Herman, D., and Calderone, R. (2000b) Identification of YPD1, a gene of Candida albicans which encodes a two-component phosphohistidine intermediate protein. Yeast 16: 10531059.
  • Catlett, N.L., Yoder, O.C., and Turgeon, B.G. (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2: 11511161.
  • Dixon, K.P., Xu, J.R., Smirnoff, N., and Talbot, N.J. (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11: 20452058.
  • Fujimura, M., Ochiai, N., Oshima, M., Motoyama, T., Ichiishi, A., Usami, R., et al. (2003) Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crassa. Biosci Biotechnol Biochem 67: 186191.
  • Furukawa, K., Katsuno, Y., Urao, T., Yabe, T., Yamada-Okabe, T., Yamada-Okabe, H., et al. (2002) Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Appl Environ Microbiol 68: 53045310.
  • Gems, D., Johnstone, I.L., and Clutterbuck, A.J. (1991) An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98: 6167.
  • Gietz, R.D., and Woods, R.A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 8796.
  • Gomi, K., Iimura, Y., and Hara, S. (1987) Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agr Biol Chem 51: 25492555.
  • Gustin, M.C., Albertyn, J., Alexander, M., and Davenport, K. (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62: 12641300.
  • Han, K.H., and Prade, R.A. (2002) Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 43: 10651078.
  • Hohmann, S. (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66: 300372.
  • Kawasaki, L., Sánchez, O., Shiozaki, K., and Aguirre, J. (2002) SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 45: 11531163.
  • Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T., and Okuno, T. (2004) Fungicide activity through activation of a fungal signalling pathway. Mol Microbiol 53: 17851796.
  • Kuroda, M., Hashida-Okado, T., Yasumoto, R., Gomi, K., Kato, I., and Takesako, K. (1998) An aureobasidin A resistance gene isolated from Aspergillus is a homolog of yeast AUR1, a gene responsible for inositol phosphorylceramide (IPC) synthase activity. Mol Gen Genet 261: 290296.
  • Longtine, M.S., McKenzie, A. III, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953961.
  • Maeda, T., Tsai, A.Y., and Saito, H. (1993) Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol Cell Biol 13: 54085417.
  • Maeda, T., Wurgler-Murphy, S.M., and Saito, H. (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369: 242245.
  • Maeda, T., Takekawa, M., and Saito, H. (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269: 554558.
  • Millar, J.B., Buck, V., and Wilkinson, M.G. (1995) Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev 9: 21172130.
  • Minetoki, T., Kumagai, C., Gomi, K., Kitamoto, K., and Takahashi, K. (1998) Improvement of promoter activity by the introduction of multiple copies of the conserved region III sequence, involved in the efficient expression of Aspergillus oryzae amylase-encoding genes. Appl Microbiol Biotechnol 50: 459467.
  • Miyata, S., Urao, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998) Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana. FEBS Lett 437: 1114.
  • Mizutani, O., Nojima, A., Yamamoto, M., Furukawa, K., Fujioka, T., Yamagata, Y., et al. (2004) Disordered cell integrity signaling by disruption of kexB gene in Aspergillus oryzae. Eukaryot Cell 3: 10361048.
  • Nakajima, K., Kunihiro, S., Sano, M., Zhang, Y., Eto, S., Chang, Y.C., et al. (2000) Comprehensive cloning and expression analysis of glycolytic genes from the filamentous fungus, Aspergillus oryzae. Curr Genet 37: 322327.
  • Nguyen, A.N., Lee, A., Place, W., and Shiozaki, K. (2000) Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol Biol Cell 11: 11691181.
  • Norbeck, J., Pahlman, A.K., Akhtar, N., Blomberg, A., and Adler, L. (1996) Purification and characterization of two isoenzymes of dl-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271: 1387513881.
  • Park, S.M., Choi, E.S., Kim, M.J., Cha, B.J., Yang, M.S., and Kim, D.H. (2004) Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol Microbiol 51: 12671277.
  • Posas, F., and Saito, H. (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276: 17021705.
  • Posas, F., and Saito, H. (1998) Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J 17: 13851394.
  • Posas, F., Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., Thai, T.C., and Saito, H. (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 ‘two-component’ osmosensor. Cell 86: 865875.
  • Raitt, D.C., Posas, F., and Saito, H. (2000) Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J 19: 46234631.
  • Reiser, V., Raitt, D.C., and Saito, H. (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161: 10351040.
  • Rosenberg, S., Coit, D., and Tekamp-Olson, P. (1990) Glyceraldehyde-3-phosphate dehydrogenase derived expression cassettes for constitutive synthesis of heterologous proteins. Methods Enzymol 185: 341351.
  • Sambrook, J., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory.
  • Samejima, I., Mackie, S., Warbrick, E., Weisman, R., and Fantes, P.A. (1998) The fission yeast mitotic regulator win1+ encodes an MAP kinase kinase kinase that phosphorylates and activates Wis1 MAP kinase kinase in response to high osmolarity. Mol Biol Cell 9: 23252335.
  • San Jose, C., Monge, R.A., Perez-Diaz, R., Pla, J., and Nombela, C. (1996) The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol 178: 58505852.
  • Sato, N., Kawahara, H., Toh, -e., , A., and Maeda, T. (2003) Phosphorelay-regulated degradation of the yeast Ssk1p response regulator by the ubiquitin-proteasome system. Mol Cell Biol 23: 66626671.
  • Schumacher, M.M., Enderlin, C.S., and Selitrennikoff, C.P. (1997) The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Curr Microbiol 34: 340347.
  • Shieh, J.C., Wilkinson, M.G., Buck, V., Morgan, B.A., Makino, K., and Millar, J.B. (1997) The Mcs4 response regulator coordinately controls the stress-activated Wak1-Wis1-Sty1 MAP kinase pathway and fission yeast cell cycle. Genes Dev 11: 10081022.
  • Shiozaki, K., Shiozaki, M., and Russell, P. (1997) Mcs4 mitotic catastrophe suppressor regulates the fission yeast cell cycle through the Wik1-Wis1-Spc1 kinase cascade. Mol Biol Cell 8: 409419.
  • Siderius, M., Kolen, C.P., Van Heerikhuizen, H., and Mager, W.H. (2000) Candidate osmosensors from Candida utilis and Kluyveromyces lactis: structural and functional homology to the Sho1p putative osmosensor from Saccharomyces cerevisiae. Biochim Biophys Acta 1517: 143147.
  • Tatebayashi, K., Takekawa, M., and Saito, H. (2003) A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J 22: 36243634.
  • Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., and Shinozaki, K. (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11: 17431754.
  • Warbrick, E., and Fantes, P.A. (1991) The wis1 protein kinase is a dosage-dependent regulator of mitosis in Schizosaccharomyces pombe. EMBO J 10: 42914299.
  • Warmka, J., Hanneman, J., Lee, J., Amin, D., and Ota, I. (2001) Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol Cell Biol 21: 5160.
  • Wei, H., Requena, N., and Fischer, R. (2003) The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol Microbiol 47: 15771588.
  • Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., and Saito, H. (1997) Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol 17: 12891297.
  • Yamada-Okabe, T., Mio, T., Ono, N., Kashima, Y., Matsui, M., Arisawa, M., and Yamada-Okabe, H. (1999) Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol 181: 72437247.
  • Zarrinpar, A., Park, S.H., and Lim, W.A. (2003) Optimization of specificity in a cellular protein interaction network by negative selection. Nature 426: 676680.
  • Zarrinpar, A., Bhattacharyya, R.P., Nittler, M.P., and Lim, W.A. (2004) Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Mol Cell 14: 825832.
  • Zhang, Y., Lamm, R., Pillonel, C., Lam, S., and Xu, J.R. (2002) Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microbiol 68: 532538.