Advertisement

Structural basis for segmental gene conversion in generation of Anaplasma marginale outer membrane protein variants

Authors

  • James E. Futse,

    1. Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
    Search for more papers by this author
  • Kelly A. Brayton,

    1. Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
    Search for more papers by this author
  • Donald P. Knowles Jr,

    1. Animal Diseases Research Unit, USDA/ARS, Pullman, WA 99164-7030, USA.
    Search for more papers by this author
  • Guy H. Palmer

    Corresponding author
    1. Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
      E-mail gpalmer@vetmed.wsu.edu; Tel. (+1) 509 335 6033; Fax (+1) 509 335 8529.
    Search for more papers by this author

E-mail gpalmer@vetmed.wsu.edu; Tel. (+1) 509 335 6033; Fax (+1) 509 335 8529.

Summary

Bacterial pathogens in the genus Anaplasma generate surface coat variants by gene conversion of chromosomal pseudogenes into single-expression sites. These pseudogenes encode unique surface-exposed hypervariable regions flanked by conserved domains, which are identical to the expression site flanking domains. In addition, Anaplasma marginale generates variants by recombination of oligonucleotide segments derived from the pseudogenes into the existing expression site copy, resulting in a combinatorial increase in variant diversity. Using the A. marginale genome sequence to track the origin of sequences recombined into the msp2 expression site, we demonstrated that the complexity of the expressed msp2 increases during infection, reflecting a shift from recombination of the complete hypervariable region of a given pseudogene to complex mosaics with segments derived from hypervariable regions of different pseudogenes. Examination of the complete set of 1183 variants with segmental changes revealed that 99% could be explained by one of the recombination sites occurring in the conserved flanking domains and the other within the hypervariable region. Consequently, we propose an ‘anchoring’ model for segmental gene conversion whereby the conserved flanking sequences tightly align and anchor the expression site sequence to the pseudogene. Associated with the recombination sites were deletions, insertions and substitutions; however, these are a relatively minor contribution to variant generation as these occurred in less than 2% of the variants. Importantly, the anchoring model, which can account for more variants than a strict segmental sequence identity mechanism, is consistent with the number of msp2 variants predicted and empirically identified during persistent infection.

Ancillary