SEARCH

SEARCH BY CITATION

References

  • Allen, N.E., Hobbs, J.N. (1995) Induction of vancomycin resistance in Enterococcus faecium by non-glycopeptide antibiotics. FEMS Microbiol Lett 132: 107114.
  • Arthur, M., Depardieu, F., Gerbaud, G., Galimand, M., Leclercq, R., Courvalin, P. (1997) The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J Bacteriol 179: 97106.
  • Baptista, M., Depardieu, F., Courvalin, P., Arthur, M. (1996) Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis. Antimicrob Agents Chemother 40: 22912295.
  • Baptista, M., Rodrigues, P., Depardieu, F., Courvalin, P., Arthur, M. (1999) Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis. Mol Microbiol 32: 1728.
  • Barna, J.C.J., Williams, D.H. (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38: 339357.
  • Bouché, S., Klauck, E., Fischer, D., Lucassen, M., Jung, K., Hengge-Aronis, R. (1998) Regulation of RssB-dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulator-controlled process. Mol Microbiol 27: 787795.
  • Bugg, T.D.H., Wright, G.D., Dutka-Malen, S., Arthur, M., Courvalin, P., Walsh, C.T. (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147. Biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30: 1040810415.
  • Chang, S., Sievert, D.M., Hageman, J.C., Boulton, M.L., Tenover, F.C., Downes, F.P., et al. (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348: 13421347.
  • Datsenko, K.A., Wanner, B.L. (2000) One step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 66406645.
  • Depardieu, F., Courvalin, P., Msadek, T. (2003) A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanB-type Enterococcus faecium. Mol Microbiol 50: 10691083.
  • Gregory, M.A., Till, R., Smith, M.C.M. (2003) Integration site for Streptomyces phage φBT1 and development of site-specific integrating vectors. J Bacteriol 185: 53205323.
  • Grissom-Arnold, J., Alborn, W.E., Nicas, T.I., Jaskunas, S.R. (1997) Induction of VanA vancomycin resistance genes in Enterococcus faecalis: use of a promoter fusion to evaluate glycopeptide and nonglycopeptide induction signals. Microb Drug Resist 3: 5364.
  • Gust, B., Challis, G.L., Fowler, K., Kieser, T., Chater, K.F. (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 18: 15411546.
  • Hakenbeck, R., Stock, J.B. (1996) Analysis of two-component signal transduction system involved in transcriptional regulation. Methods Enzymol 273: 281300.
  • Haldimann, A., Fisher, S.L., Daniels, L.L., Walsh, C.T., Wanner, B.L. (1997) Transcriptional regulation of the Enterococcus faecium BM4147 vancomycin resistance gene cluster by the VanS-VanR two-component regulatory system in Escherichia coli K-12. J Bacteriol 179: 59035913.
  • Handwerger, S., Kolokathis, A. (1990) Induction of vancomycin resistance in Enterococcus faecium by inhibition of transglycosylation. FEMS Microbiol Lett 58: 167170.
  • Healy, V.L., Lessard, I.A., Roper, D.I., Knox, J.R., Walsh, C.T. (2000) Vancomycin resistance in enterococci: reprogramming of the d-Ala-d-Ala ligases in bacterial peptidoglycan biosynthesis. Chem Biol 7: R109R119.
  • Hong, H.-J., Paget, M.S.B., Buttner, M.J. (2002) A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol 44: 11991211.
  • Hong, H.-J., Hutchings, M.I., Neu, J.M., Wright, G.D., Paget, M.S.B., Buttner, M.J. (2004) Characterisation of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 52: 11071121.
  • Hong, H.J., Hutchings, M.I., Hill, L.M., Buttner, M.J. (2005) The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 280: 1305513061.
  • Hutchings, M.I., Hoskisson, P.A., Chandra, G., Buttner, M.J. (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150: 27952806.
  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, and Hopwood, D.A. (2000) Practical Streptomyces. Norwich: The John Innes Foundation.
  • Lai, M.H., Kirsch, D.R. (1996) Induction signals for vancomycin resistance encoded by the vanA gene cluster in Enterococcus faecium. Antimicrob Agents Chemother 40: 16451648.
  • Mani, N., Sancheti, P., Jiang, Z.D., McNaney, C., DeCenzo, M., Knight, B., et al. (1998) Screening systems for detecting inhibitors of cell wall transglycosylation in Enterococcus. Cell wall transglycosylation inhibitors in Enterococcus. J Antibiot 51: 471479.
  • Molle, V., Buttner, M.J. (2000) Different alleles of the response regulator gene bldM arrest Streptomyces coelicolor development at distinct stages. Mol Microbiol 36: 12651278.
  • Neu, J.M., Wright, G.D. (2001) Inhibition of sporulation, glycopeptide antibiotic production and resistance in Streptomyces toyocaensis NRRL 15009 by protein kinase inhibitors. FEMS Microbiol Lett 199: 1520.
  • Paget, M.S.B., Chamberlin, L., Atrih, A., Foster, S.J., Buttner, M.J. (1999) Evidence that the extracytoplasmic function sigma factor, σE, is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181: 204211.
  • Pearson, H. (2002) ‘Superbug’ hurdles key drug barrier. Nature 418: 469470.
  • Pootoolal, J., Neu, J., Wright, G.D. (2002a) Glycopeptide antibiotic resistance. Annu Rev Pharmacol Toxicol 42: 381408.
  • Pootoolal, J., Thomas, M.G., Marshall, C.G., Neu, Hubbard, B.K., Walsh, C.T., Wright, G.D. (2002b) Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis. Proc Natl Acad Sci USA 99: 89628967.
  • Pruss, B.M., Wolfe, A.J. (1994) Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol 12: 973984.
  • Tenover, F.C., Weigel, L.M., Appelbaum, P.C., McDougal, L.K., Chaitram, J., McAllister, S., et al. (2004) Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother 48: 275280.
  • Ulijasz, A.T., Grenader, A., Weisblum, B. (1996) A vancomycin-inducible lacZ reporter system in Bacillus subtilis: induction by antibiotics that inhibit cell wall synthesis and by lysozyme. J Bacteriol 178: 63056309.
  • Walsh, C.T., Fisher, S.L., Park, I.S., Prahalad, M., Wu, Z. (1996) Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem Biol 3: 2128.
  • Weigel, L.M., Clewell, D.B., Gill, S.R., Clark, N.C., McDougal, L.K., Flannagan, S.E., et al. (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 28: 15691571.
  • Williams, D.H., Williamson, M.P., Butcher, D.W., Hammond, S.J. (1983) Detailed binding sites of the antibiotics vancomycin and ristocetin A: determination of intermolecular distances in antibiotic/substrate complexes by use of the time-dependent NOE. J Am Chem Soc 105: 13321339.